首页> 外文期刊>Computers & mathematics with applications >Convergence of discrete Laplace-Beltrami operators over surfaces
【24h】

Convergence of discrete Laplace-Beltrami operators over surfaces

机译:离散Laplace-Beltrami算子在曲面上的收敛性

获取原文
获取原文并翻译 | 示例

摘要

The convergence property of the discrete Laplace-Beltrami operator is the foundation of convergence analysis of the numerical simulation process of some geometric partial differential equations which involve the operator. The aim of this paper is to review several already-used discrete Laplace-Beltrami operators over triangulated surface and study numerically, as well as theoretically, their convergent behavior. We show that none of them is convergent in general, but two of them, proposed by Desbrun et al. and Meyer et al., are convergent in a special case. We point out that this special case is very important in the numerical simulation of geometric partial differential equations. (C) 2004 Elsevier Ltd. All rights reserved.
机译:离散Laplace-Beltrami算子的收敛性是对某些涉及算子的几何偏微分方程数值模拟过程进行收敛分析的基础。本文的目的是回顾三角表面上几个已经使用的离散Laplace-Beltrami算子,并从数值上以及理论上研究它们的收敛行为。我们表明,它们一般都不会收敛,但是其中两个是由Desbrun等人提出的。和Meyer等人在一个特殊情况下会聚。我们指出,这种特殊情况在几何偏微分方程的数值模拟中非常重要。 (C)2004 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号