首页> 外文期刊>Computers & mathematics with applications >A New Sinc-Galerkin Method for Convection-Diffusion Equations with Mixed Boundary Conditions
【24h】

A New Sinc-Galerkin Method for Convection-Diffusion Equations with Mixed Boundary Conditions

机译:混合边界条件对流扩散方程的Sinc-Galerkin新方法

获取原文
获取原文并翻译 | 示例

摘要

A new sinc-Galerkin method is developed for approximating the solution of convection-diffusion equations with mixed boundary conditions on half-infinite intervals. The method avoids differentiation of the coefficients of the PDE, rendering it appropriate as a forward solver in an inverse coefficient problem. The method has the advantage that no functions are appended to the sine basis in the discretization. An error analysis is included, and it is shown that the error in the approximate solution is bounded in the infinity norm by the norm of the inverse of the coefficient matrix multiplied by a factor that decays exponentially with the size of the system. We demonstrate the exponential convergence of the method on several test problems.
机译:提出了一种新的sinc-Galerkin方法,用于逼近半无限间隔上具有混合边界条件的对流扩散方程的解。该方法避免了PDE系数的微分,使其适合作为反系数问题中的正向求解器。该方法的优点在于在离散化中没有函数被附加到正弦基础上。包括误差分析,结果表明,近似解中的误差在无穷范数中由系数矩阵的逆范数乘以随系统规模呈指数衰减的因子所限制。我们证明了该方法在几个测试问题上的指数收敛性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号