首页> 外文期刊>Applied Mathematical Modelling >The Sine-collocation and Sinc-Galerkin methods for solving the two-dimensional Schrodinger equation with nonhomogeneous boundary conditions
【24h】

The Sine-collocation and Sinc-Galerkin methods for solving the two-dimensional Schrodinger equation with nonhomogeneous boundary conditions

机译:求解带非均匀边界条件的二维薛定inger方程的正弦搭配和Sinc-Galerkin方法

获取原文
获取原文并翻译 | 示例

摘要

In the last three decades, Sinc numerical methods have been extensively used for solving differential equations, not only because of their exponential convergence rate, but also due to their desirable behavior toward problems with singularities. This paper illustrates the application of Sine-collocation and Sinc-Galerkin methods to the approximate solution of the two-dimensional time dependent Schrodinger equation with nonhomogeneous boundary conditions. Some numerical examples are presented and the proposed methods are compared with each other.
机译:在最近的三十年中,Sinc数值方法已广泛用于求解微分方程,这不仅是因为它们的指数收敛速度,而且还因为它们对奇异问题的理想表现。本文说明了正弦搭配和Sinc-Galerkin方法在具有非均匀边界条件的二维时间相关Schrodinger方程的近似解中的应用。给出了一些数值例子,并对提出的方法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号