首页> 外文期刊>Computers & mathematics with applications >Lyapunov Stability of Systems of Linear Generalized Ordinary Differential Equations
【24h】

Lyapunov Stability of Systems of Linear Generalized Ordinary Differential Equations

机译:线性广义常微分方程组的Lyapunov稳定性。

获取原文
获取原文并翻译 | 示例

摘要

Effective necessary and sufficient conditions are established for the stability in the Lyapunov sense of solutions of the linear system of generalized ordinary differential equations dx(t) = dA(t)·x(t) + df(t), where A: R_+ → R~(n x n) and f: R_+ ? R~n (R_+ = [0, +∞[) are, respectively, matrix- and vector-functions with bounded total variation components on every closed interval from R_+, having properties analogous to the case of systems of ordinary differential equations with constant coefficients. The obtained results are realized for linear systems of both impulsive equations and difference equations.
机译:为Lyapunov意义上的广义常微分方程线性系统dx(t)= dA(t)·x(t)+ df(t)的线性解的稳定性建立了有效必要的充要条件,其中A:R_ + →R〜(nxn)和f:R_ +? R〜n(R_ + = [0,+∞[)分别是矩阵函数和矢量函数,在距R_ +的每个封闭间隔上具有有限的总变化分量,其性质类似于具有以下项的常微分方程组的情况常数系数。对于脉冲方程和差分方程的线性系统,都获得了所获得的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号