首页> 外文期刊>Computers & mathematics with applications >HLI, A Direct Method Suitable for Partial and Fully Implicit Time Integration of Primitive Equation Meteorological Models
【24h】

HLI, A Direct Method Suitable for Partial and Fully Implicit Time Integration of Primitive Equation Meteorological Models

机译:HLI,适用于原始方程式气象模型的部分和全部隐式时间积分的直接方法

获取原文
获取原文并翻译 | 示例

摘要

HLI, the homogeneously linearized implicit method is a direct implicit time integration method for nonlinear prognostic equations. For homogeneous linear test problems it is identical to the known implicit method, when applied to the full model area. As most theoretical results concerning the implicit method use linear homogeneous test problems, these apply immediately to HLI. The implicit method, when applied to the whole model area, is called the fully implicit method. In order to reduce the numerical expense for large integration areas, a partial implicit method is defined by posing artificial numerical boundary conditions, which result in a smaller set of equations, corresponding to the part of the integration area chosen. The application of either full or partial methods to nonlinear and inhomogeneous problems is achieved by defining for each grid point the local homogeneously linearized problem. Partial schemes are convenient when using multiprocessor computers, as only local and neighbouring data have to be used at each grid point. Only grid point discretisations of finite order are admitted. The proposed method would not be suitable for the spectral method. Computational examples are presented to show the suitability of this method for inhomogeneous situations and the ease of the treatment of internal boundary conditions. A semi-implicit treatment was also tested, which treats only the terms responsible for the fast waves implicit. This requires only the Fourier transformation of one field and in the generalised Fourier back transformation only one linear equation has to be solved, rather that a system of equations. In this paper only the trapezoidal implicit method was used. HLI could, however, be applied in the same way with other implicit methods.
机译:HLI,齐次线性化隐式方法是用于非线性预测方程的直接隐式时间积分方法。对于齐次线性测试问题,当应用于整个模型区域时,它与已知的隐式方法相同。由于有关隐式方法的大多数理论结果都使用线性齐次检验问题,因此这些问题立即适用于HLI。当隐式方法应用于整个模型区域时,称为完全隐式方法。为了减少大积分区域的数值开销,通过设置人工数值边界条件来定义部分隐式方法,这会导致方程组更小,对应于所选积分区域的一部分。通过为每个网格点定义局部均匀线性化问题,可以实现将全部或部分方法应用于非线性和非均匀性问题。使用多处理器计算机时,局部方案很方便,因为在每个网格点仅需要使用本地和相邻数据。仅接受有限阶网格点离散化。所提出的方法将不适用于光谱方法。算例说明了该方法在非均匀情况下的适用性以及内部边界条件的易于处理。还测试了半隐式处理,该处理仅处理负责隐式快速波的术语。这只需要一个场的傅立叶变换,而在广义傅立叶逆变换中,只需要求解一个线性方程,而不是方程组。在本文中,仅使用梯形隐式方法。但是,HLI可以与其他隐式方法以相同的方式应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号