首页> 外文期刊>Computers & mathematics with applications >Thermo-elastic interactions in an infinite elastic solid due to distributed time-dependent heat sources in generalized thermo-elasticity III
【24h】

Thermo-elastic interactions in an infinite elastic solid due to distributed time-dependent heat sources in generalized thermo-elasticity III

机译:广义热弹性中由于分布时间相关的热源而在无限弹性固体中进行的热弹性相互作用

获取原文
获取原文并翻译 | 示例

摘要

The generalized theory of thernio-elasticity of Type III recently developed by Green and Naghdi is employed to study thermo-elastic interactions in a homogeneous isotropic unbounded solid having distributed instantaneous and continuous heat sources. The solutions arc derived by using Laplace transform on time and then Fourier transform on space. It is found that the interactions consist of a wave travelling with the speed of dilatational wave and a diffusive part. The temperature and the deformation field are both continuous at the dilatational wave front while the stress field exhibits finite discontinuity at this location in case of instantaneous distributed heat sources. For continuous distributed heat sources, the thermal, deformation, and stress fields are however all continuous at the dilatational wave front. All the fields suffer exponential attenuation at the dilatational wave front and the attenuation is influenced by the thermo-elastic coupling and the thermal diffusivity of the medium. The results of the present analysis are compared to those derived by using other generalized thermo-elasticity theories such as L-S theory and G-L theory. The analysis reveals that G-N theory III eliminates some of the finite discontinuities and delta-function singularity in the deformation, temperature and stress fields derived by using other generalized thermo-elasticity theories in earlier investigations. Finally, numerical results applicable to a copper-like material are presented in order to illustrate the analytical result. (c) 2006 Elsevier Ltd. All rights reserved.
机译:Green和Naghdi最近开发的III型热弹性的广义理论用于研究具有分布的瞬时和连续热源的均质各向同性无边界固体中的热弹相互作用。通过按时间使用Laplace变换,然后在空间上进行傅立叶变换,得出解。发现相互作用是由以扩张波的速度传播的波和扩散部分组成。在瞬时分布热源的情况下,温度和形变场在膨胀波前都是连续的,而应力场在该位置表现出有限的不连续性。但是对于连续分布的热源,热场,变形场和应力场在膨胀波前都是连续的。所有场都在膨胀波前遭受指数衰减,并且衰减受到介质的热弹性耦合和热扩散率的影响。将本分析的结果与使用其他广义热弹性理论(例如L-S理论和G-L理论)得出的结果进行比较。分析表明,G-N理论III消除了早期研究中使用其他广义热弹性理论推导的变形,温度和应力场中的某些有限不连续性和三角函数奇异性。最后,给出了适用于类铜材料的数值结果,以说明分析结果。 (c)2006 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号