首页> 外文期刊>Computers & mathematics with applications >A recurrent neural network computing the largest imaginary or real part of eigenvalues of real matrices
【24h】

A recurrent neural network computing the largest imaginary or real part of eigenvalues of real matrices

机译:递归神经网络,用于计算实矩阵特征值的最大虚部或实部

获取原文
获取原文并翻译 | 示例

摘要

As the efficient calculation of eigenpairs of a matrix, especially, a general real matrix, is significant in engineering, and neural networks run asynchronously and can achieve high performance in calculation, this paper introduces a recurrent neural network (RNN) to extract some eigenpair. The RNN, whose connection weights are dependent upon the matrix, can be transformed into a complex differential system whose variable z(t) is a complex vector. By the analytic expression of |z(t)|~2, the convergence properties of the RNN are analyzed in detail. With general nonzero initial complex vector, the RNN obtains the largest imaginary part of all eigenvalues. By a rearrangement of connection matrix, the largest real part is obtained. A practice of a 7 x 7 matrix indicates the validity of this method. Two matrices, whose dimensionalities are 50 and 100, respectively, are employed to test the efficiency of this approach when dimension number becomes large. The results imply that the iteration number at which the network enters into equilibrium state is not sensitive with dimensionality. This RNN can be used to estimate the largest modulus of eigenvalues, etc. Compared with other neural networks designed for the similar aims, this RNN is applicable to general real matrices.
机译:由于矩阵的本征对的有效计算,特别是一般实矩阵,在工程上意义重大,并且神经网络异步运行并且可以在计算中实现高性能,因此,本文介绍一种递归神经网络(RNN)来提取一些本征对。可以将连接权重取决于矩阵的RNN转换为变量z(t)为复数向量的复微分系统。通过| z(t)|〜2的解析表达式,可以详细分析RNN的收敛特性。利用一般的非零初始复矢量,RNN获得所有特征值的最大虚部。通过重新排列连接矩阵,可以获得最大的实部。 7 x 7矩阵的实践表明该方法的有效性。当维数变大时,使用两个维数分别为50和100的矩阵来测试此方法的效率。结果表明,网络进入平衡状态的迭代次数对维数不敏感。该RNN可用于估计特征值等的最大模数。与为类似目的而设计的其他神经网络相比,该RNN适用于一般的实数矩阵。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号