首页> 外文期刊>Computers & mathematics with applications >Handling occlusion in optical flow algorithms for object tracking
【24h】

Handling occlusion in optical flow algorithms for object tracking

机译:处理光流算法中的遮挡物以进行对象跟踪

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study simple algorithms for tracking objects in a video sequence, based on the selection of landmark points representative of the moving objects in the first frame of the sequence to be analyzed. The movement of these points is estimated using a sparse optical-flow method. Methods of this kind are fast, but they are not very robust. Particularly, they are not able to handle the occlusion of the moving objects in the video. To improve the performance of optical flow-based methods, we propose the use of adaptive filters and neural networks to predict the expected instantaneous velocities of the objects, using the predicted velocities as indicators of the performance of the tracking algorithm. The efficiency of these strategies in handling occlusion problems are tested with a set of synthetic and real video sequences.
机译:在本文中,我们基于在要分析的序列的第一帧中代表运动对象的地标点的选择,研究了用于跟踪视频序列中对象的简单算法。这些点的移动是使用稀疏光流法估算的。这种方法速度很快,但是不够鲁棒。特别是,它们不能处理视频中运动对象的遮挡。为了提高基于光流的方法的性能,我们建议使用自适应滤波器和神经网络来预测对象的预期瞬时速度,并使用预测的速度作为跟踪算法性能的指标。这些策略在处理遮挡问题方面的效率通过一组合成视频序列和真实视频序列进行了测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号