首页> 外文期刊>Computers & mathematics with applications >Mesoscopic modeling of flow and dispersion phenomena in fractured solids
【24h】

Mesoscopic modeling of flow and dispersion phenomena in fractured solids

机译:裂隙固体中流动和分散现象的介观建模

获取原文
获取原文并翻译 | 示例

摘要

The problem of hydrodynamic dispersion in porous media is considered and numerical predictions of the mixing degree in a single intersection are provided. The flow field in the intersection and adjacent pores or fractures is calculated using a lattice Boltzmann model for single phase flow. A particle-tracking scheme is used, subsequently, that monitors the migration of solute particles in the area of the intersection taking into account the local flow field and a Brownian field. Mixing is quantified in terms of the probability of solute transfer across the junction into the opposite fracture. To circumvent the problem of large computational times for cases of fast flow compared to diffusion, a lattice Boltzmann advection-diffusion model is used, that offers significant savings on computational time without sacrificing accuracy. It is shown that the solute dispersion in a fracture network is a strong function of the Reynolds number, even if the Peclet number remains constant, due to the extensive recirculation areas that may develop in regions close to the junction.
机译:考虑了多孔介质中流体动力分散的问题,并提供了单个交汇处混合度的数值预测。使用单相流的格子Boltzmann模型计算相交处和相邻孔隙或裂缝中的流场。随后使用粒子跟踪方案,该方案在考虑了局部流场和布朗场的情​​况下监视相交区域中溶质粒子的迁移。根据溶质跨结转移到相对的裂缝中的可能性来量化混合。为了避免与扩散相比流量快的情况下计算时间较长的问题,使用了格子Boltzmann对流扩散模型,该模型可在不牺牲准确性的情况下节省大量计算时间。结果表明,即使在派克雷特数保持恒定的情况下,裂缝网络中的溶质弥散也是雷诺数的强函数,这是由于可能在靠近交界处的区域形成大量的回流区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号