首页> 外文期刊>Computers & mathematics with applications >Study On Fuzzy Optimization Methods Based On Quasi-linear Fuzzy Number And Genetic Algorithm
【24h】

Study On Fuzzy Optimization Methods Based On Quasi-linear Fuzzy Number And Genetic Algorithm

机译:基于准线性模糊数和遗传算法的模糊优化方法研究

获取原文
获取原文并翻译 | 示例

摘要

Fuzzy optimization is a well-known optimization problem in artificial intelligence, system control, manufacturing and management, establishing general and operable fuzzy optimization methods are important in both theory and application. In this paper, starting from the structure of fuzzy information and the mechanism of fuzzy optimization, we propose the concept of quasi-linear fuzzy number, and discuss its approximation properties and the features on arithmetic operations. Further, by distinguishing principal indices and secondary indices, we establish the fuzzy optimization model based on synthesizing effect by combining the compound quantification strategy of fuzzy information, and give a fuzzy optimization method based on principal operations and genetic algorithm (FOM-BPOfflGA). Finally, we consider the convergence of our algorithm using the theory of Markov chains and analyze its performance through two concrete examples. All these indicate that FOM-BPOfflGA can effectively merge decision preferences into the optimization process and it also possess better global convergence, so it can be applied to many fuzzy optimization problems.
机译:模糊优化是人工智能,系统控制,制造和管理中的一个众所周知的优化问题,建立通用的可操作的模糊优化方法在理论和应用上都很重要。本文从模糊信息的结构和模糊优化的机理出发,提出了准线性模糊数的概念,并讨论了其近似性质和算术运算的特点。此外,通过区分主指标和二级指标,结合模糊信息的复合量化策略,建立了基于综合效果的模糊优化模型,提出了基于主操作和遗传算法(FOM-BPOfflGA)的模糊优化方法。最后,我们使用马尔可夫链理论考虑算法的收敛性,并通过两个具体示例分析其性能。所有这些表明,FOM-BPOfflGA可以有效地将决策偏好合并到优化过程中,并且还具有更好的全局收敛性,因此可以应用于许多模糊优化问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号