首页> 外文期刊>Computers & mathematics with applications >Adams-Bashforth and Adams-Moulton methods for solving differential Riccati equations
【24h】

Adams-Bashforth and Adams-Moulton methods for solving differential Riccati equations

机译:用于求解微分Riccati方程的Adams-Bashforth和Adams-Moulton方法

获取原文
获取原文并翻译 | 示例

摘要

Differential Riccati equations play a fundamental role in control theory, for example, optimal control, filtering and estimation, decoupling and order reduction, etc. In this paper several algorithms for solving differential Riccati equations based on Adams-Bashforth and Adams-Moulton methods are described. The Adams-Bashforth methods allow us explicitly to compute the approximate solution at an instant time from the solutions in previous instants. In each step of Adams-Moulton methods an algebraic matrix Riccati equation (AMRE) is obtained, which is solved by means of Newton's method. Nine algorithms are considered for solving the AMRE: a Sylvester algorithm, an iterative generalized minimum residual (CMRES) algorithm, a fixed-point algorithm and six combined algorithms. Since the above algorithms have a similar structure, it is possible to design a general and efficient algorithm that uses one algorithm or another depending on the considered differential matrix Riccati equation. MATLAB versions of the above algorithms are developed, comparing precision and computational costs, after numerous tests on five case studies.
机译:微分Riccati方程在控制理论中起着基本作用,例如,最优控制,滤波和估计,解耦和阶数减少等。本文介绍了几种基于Adams-Bashforth和Adams-Moulton方法的微分Riccati方程求解算法。 。 Adams-Bashforth方法使我们可以从先前时刻的解中立即计算出时刻的近似解。在Adams-Moulton方法的每个步骤中,都会获得一个代数矩阵Riccati方程(AMRE),该方程可通过牛顿法求解。考虑了九种算法来求解AMRE:Sylvester算法,迭代广义最小残差(CMRES)算法,定点算法和六个组合算法。由于上述算法具有相似的结构,因此可以根据所考虑的微分矩阵Riccati方程设计使用一种算法或另一种算法的通用高效算法。经过五个案例研究的大量测试之后,开发了上述算法的MATLAB版本,比较了精度和计算成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号