首页> 外文期刊>Computers & mathematics with applications >A note on convergence of semi-implicit Euler methods for stochastic pantograph equations
【24h】

A note on convergence of semi-implicit Euler methods for stochastic pantograph equations

机译:关于随机受电弓方程的半隐式Euler方法收敛性的一点说明

获取原文
获取原文并翻译 | 示例

摘要

In the literature [1] [Existence and uniqueness of the solutions and convergence of semi-implicit Euler methods for stochastic pantograph equation, J. Math. Anal. Appl. 325 (2007) 1142-1159], Fan and Liu investigated the existence and uniqueness of the solution for stochastic pantograph equation and proved the convergence of the semi-implicit Euler methods under the Lipschitz condition and the linear growth condition. Unfortunately, the main result of convergence derived by the conditions is somewhat restrictive for the purpose of practical application, because there are many stochastic pantograph equations that only satisfy the local Lipschitz condition. In this note we improve the corresponding results in the above-mentioned reference.
机译:在文献[1]中[关于随机受电弓方程的半隐式Euler方法的解的存在性和收敛性,J。肛门应用325(2007)1142-1159],范和刘研究了随机受电弓方程解的存在性和唯一性,并证明了在Lipschitz条件和线性增长条件下半隐式Euler方法的收敛性。不幸的是,由于存在许多仅满足局部Lipschitz条件的随机受电弓方程,因此这些条件得出的收敛结果在实际应用中会受到一定限制。在本说明中,我们改进了上述参考文献中的相应结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号