首页> 外文期刊>Computers & mathematics with applications >Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method
【24h】

Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method

机译:使用组合的浸入边界晶格玻尔兹曼有限元方法对浸入流体中的可变形颗粒进行高效,准确的模拟

获取原文
获取原文并翻译 | 示例
       

摘要

The deformation of an initially spherical capsule, freely suspended in simple shear flow, can be computed analytically in the limit of small deformations [D. Barthes-Biesel, J.M. Rallison, The time-dependent deformation of a capsule freely suspended in a linear shear flow, J. Fluid Mech. 113 (1981) 251 -267]. Those analytic approximations are used to study the influence of the mesh tessellation method, the spatial resolution, and the discrete delta function of the immersed boundary method on the numerical results obtained by a coupled immersed boundary lattice Boltzmann finite element method. For the description of the capsule membrane, a finite element method and the Skalak constitutive model [R. Skalak, A. Tozeren, R.P. Zarda, S. Chien, Strain energy function of red blood cell membranes, Biophys. J. 13 (1973) 245-264] have been employed. Our primary goal is the investigation of the presented model for small resolutions to provide a sound basis for efficient but accurate simulations of multiple deformable particles immersed in a fluid. We come to the conclusion that details of the membrane mesh, as tessellation method and resolution, play only a minor role. The hydrodynamic resolution, i.e., the width of the discrete delta function, can significantly influence the accuracy of the simulations. The discretization of the delta function introduces an artificial length scale, which effectively changes the radius and the deformability of the capsule. We discuss possibilities of reducing the computing time of simulations of deformable objects immersed in a fluid while maintaining high accuracy.
机译:自由地悬挂在简单剪切流中的最初为球形的胶囊的变形,可以在小变形的限制下进行解析计算[D。 Barthes-Biesel,J.M。Rallison,随时间变化的自由悬浮在线性剪切流中的胶囊变形,J。Fluid Mech。 113(1981)251 -267]。这些解析近似值用于研究网格细分方法,空间分辨率和浸入边界方法的离散delta函数对耦合浸入边界格子Boltzmann有限元方法获得的数值结果的影响。对于胶囊膜的描述,有限元方法和Skalak本构模型[R. Skalak,A。Tozeren,R.P。Zarda,S。Chien,红细胞膜的应变能函数,Biophys。 [J.13(1973)245-264]已被采用。我们的主要目标是研究提出的小分辨率模型,为有效而准确地模拟浸入流体中的多个可变形颗粒提供坚实的基础。我们得出的结论是,作为细分方法和分辨率的膜网格的细节仅起次要作用。流体动力学分辨率,即离散德尔塔函数的宽度,可以极大地影响模拟的准确性。增量函数的离散化引入了人为的长度比例,可以有效地改变胶囊的半径和可变形性。我们讨论了在保持高精度的同时减少浸入流体中的可变形物体的模拟计算时间的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号