首页> 外文期刊>IEEE Transactions on Computers >Accelerating Hyperdimensional Computing on FPGAs by Exploiting Computational Reuse
【24h】

Accelerating Hyperdimensional Computing on FPGAs by Exploiting Computational Reuse

机译:通过利用计算重用加速对FPGA的超高规范计算

获取原文
获取原文并翻译 | 示例

摘要

Brain-inspired hyperdimensional (HD) computing emulates cognition by computing with long-size vectors. HD computing consists of two main modules: encoder and associative search. The encoder module maps inputs into high dimensional vectors, called hypervectors. The associative search finds the closest match between the trained model (set of hypervectors) and a query hypervector by calculating a similarity metric. To perform the reasoning task for practical classification problems, HD needs to store a non-binary model and uses costly similarity metrics as cosine. In this article we propose an FPGA-based acceleration of HD exploiting Computational Reuse (HD-Core) which significantly improves the computation efficiency of both encoding and associative search modules. HD-Core enables computation reuse in both encoding and associative search modules. We observed that consecutive inputs have high similarity which can be used to reduce the complexity of the encoding step. The previously encoded hypervector is reused to eliminate the redundant operations in encoding the current input. HD-Core, additionally eliminates the majority of multiplication operations by clustering the class hypervector values, and sharing the values among all the class hypervectors. Our evaluations on several classification problems show that HD-Core can provide 4.4x energy efficiency improvement and 4.8 x speedup over the optimized GPU implementation while ensuring the same quality of classification. HD-Core provides 2.4x more throughput than the state-of-the-art FPGA implementation; on average, 40 percent of this improvement comes directly from enabling computation reuse in the encoding module and the rest comes from the computation reuse in the associative search module.
机译:通过使用长尺寸向量计算,计算脑激发超高维度(HD)计算认知。高清计算由两个主模块组成:编码器和关联搜索。编码器模块映射到高维向量的输入,称为超虚角。关联搜索通过计算相似度量,查找培训的模型(多维数据集)和查询超级监视器之间最接近的匹配。为了对实际分类问题进行推理任务,HD需要存储非二进制模型,并使用昂贵的相似性度量为余弦。在本文中,我们提出了基于FPGA的加速,高清利用计算重用(HD-Core),这显着提高了编码和关联搜索模块的计算效率。 HD-Core使得在编码和关联搜索模块中能够在编码和关联搜索模块中重用。我们观察到,连续输入具有高相似性,可用于降低编码步骤的复杂性。以前编码的超视频重用以消除编码当前输入的冗余操作。 HD-Core,另外通过群集类超级页值来消除大多数乘法操作,并在所有类超广视之间共享值。我们对若干分类问题的评估表明,HD-Core可以在优化的GPU实施中提供4.4倍的能效改进和4.8倍的加速,同时确保相同的分类质量。 HD-Core提供比最先进的FPGA实施更多的吞吐量;平均而言,该改进的40%直接从能够在编码模块中实现计算重用,其余部分来自关联搜索模块中的计算重用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号