首页> 外文期刊>IEEE Transactions on Computers >Low Complexity Normal Elements over Finite Fields of Characteristic Two
【24h】

Low Complexity Normal Elements over Finite Fields of Characteristic Two

机译:特征二的有限域上的低复杂度法线元

获取原文
获取原文并翻译 | 示例

摘要

In this paper we extend previously known results on the complexities of normal elements. Using algorithms that exhaustively test field elements, we are able to provide the distribution of the complexity of normal elements for binary fields with degree extensions up to 39. We also provide current results on the smallest known complexity for the remaining degree extensions up to 330 by using a combination of constructive theorems and known exact values. We give an algorithm to exhaustively search field elements by using Gray codes that allows us to reuse previous computations, and compare this with the traditional method. We describe and analyze these algorithms and show both experimentally and asymptotically that the Gray code optimization gives substantial savings. The total computation of the distribution of the complexity of normal elements for degrees up to 39 in our experiments allows us to draw several conjectures. In particular, our data provides remarkable evidence for the conjecture that the complexity of normal elements follows a normal distribution. Finally, we propose that there is no linear bound on the minimum complexity with respect to the degree of the extension.
机译:在本文中,我们扩展了关于正常元素复杂性的先前已知结果。使用对场元素进行详尽测试的算法,我们能够为扩展度最大为39的二进制场提供普通元素的复杂度分布。对于剩余的扩展度最大为330,我们还提供了最小已知复杂度的最新结果。使用构造定理和已知精确值的组合。我们给出了一种使用格雷码详尽搜索字段元素的算法,该算法允许我们重用以前的计算,并将其与传统方法进行比较。我们描述和分析了这些算法,并通过实验和渐近方式表明了格雷码优化可以节省大量资金。在我们的实验中,对于度数最大为39的法向元素的复杂度分布的总体计算,使我们可以得出几个猜想。特别是,我们的数据为正态元素的复杂度服从正态分布的猜想提供了非凡的证据。最后,我们提出关于扩展程度的最小复杂度没有线性限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号