首页> 外文期刊>Computers, IEEE Transactions on >Pipelined Decision Tree Classification Accelerator Implementation in FPGA (DT-CAIF)
【24h】

Pipelined Decision Tree Classification Accelerator Implementation in FPGA (DT-CAIF)

机译:FPGA中的流水线决策树分类加速器(DT-CAIF)实现

获取原文
获取原文并翻译 | 示例

摘要

Decision tree classification (DTC) is a widely used technique in data mining algorithms known for its high accuracy in forecasting. As technology has progressed and available storage capacity in modern computers increased, the amount of data available to be processed has also increased substantially, resulting in much slower induction and classification times. Many parallel implementations of DTC algorithms have already addressed the issues of reliability and accuracy in the induction process. In the classification process, larger amounts of data require proportionately more execution time, thus hindering the performance of legacy systems. We have devised a pipelined architecture for the implementation of axis parallel binary DTC that dramatically improves the execution time of the algorithm while consuming minimal resources in terms of area. Scalability is achieved when connected to a high-speed communication unit capable of performing data transfers at a rate similar to that of the DTC engine. We propose a hardware accelerated solution composed of parallel processing nodes capable of independently processing data from a streaming source. Each engine processes the data in a pipelined fashion to use resources more efficiently and increase the achievable throughput. The results show that this system is 3.5 times faster than the existing hardware implementation of classification.
机译:决策树分类(DTC)是数据挖掘算法中一种广泛使用的技术,以其预测的高精度而著称。随着技术的进步和现代计算机中可用存储容量的增加,可处理的数据量也大大增加,导致归纳和分类时间大大缩短。 DTC算法的许多并行实现已经解决了归纳过程中的可靠性和准确性问题。在分类过程中,大量的数据按比例需要更多的执行时间,从而阻碍了传统系统的性能。我们设计了一种用于实现轴并行二进制DTC的流水线体系结构,该体系结构大大缩短了算法的执行时间,同时在面积上消耗的资源最少。当连接到能够以类似于DTC引擎的速率执行数据传输的高速通信单元时,就可以实现可伸缩性。我们提出了一种硬件加速解决方案,该解决方案由能够独立处理来自流源的数据的并行处理节点组成。每个引擎以流水线方式处理数据,以更有效地使用资源并增加可实现的吞吐量。结果表明,该系统比现有的分类硬件实现快3.5倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号