首页> 外文期刊>Image Processing, IET >XNORCONV: CNNs accelerator implemented on FPGA using a hybrid CNNs structure and an inter-layer pipeline method
【24h】

XNORCONV: CNNs accelerator implemented on FPGA using a hybrid CNNs structure and an inter-layer pipeline method

机译:XNORCONV:使用混合CNN结构和层间流水线方法在FPGA上实现的CNN加速器

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, convolutional neural networks (CNNs) have become a research hotspot because of their high performance in computer vision and pattern recognition. However, as the high energy consumption of traditional graphic processing units-based CNNs, it is difficult to deploy them into portable devices. To deal with this problem, a hybrid CNN structure (XNORCONV) was proposed and implemented on field-programmable gate array (FPGA) in this study. Two improvements have been applied in XNORCONV. Firstly, the multiplications in the convolutional layer (CONV) were replaced by XNOR operations to save the multiplier and reduce computational complexity. Secondly, an inter-layer pipeline was designed to further accelerate the calculation. XNORCONV was implemented on Xilinx Zynq-7000 xc7z020clg400-1 under the clock frequency of 150 MHz and tested with MNIST dataset. The results of the experiment show that XNORCONV can classify each picture from MNIST in $ 18 .97, {m mu s}$18.97 mu s, and achieve 98.4% recognition accuracy. Compared with traditional Lenet-5 on different platforms, XNORCONV reduced multiplication by 85.6% with only 0.4% accuracy loss.
机译:如今,卷积神经网络(CNN)由于其在计算机视觉和模式识别方面的高性能而成为研究热点。但是,由于传统的基于图形处理单元的CNN能耗高,很难将其部署到便携式设备中。为了解决这个问题,本研究提出了一种混合CNN结构(XNORCONV)并在现场可编程门阵列(FPGA)上实现。 XNORCONV中进行了两项改进。首先,用XNOR运算代替卷积层(CONV)中的乘法,以节省乘法器并降低计算复杂度。其次,设计了层间管线以进一步加速计算。 XNORCONV在Xilinx Zynq-7000 xc7z020clg400-1上以150 MHz的时钟频率实现,并使用MNIST数据集进行了测试。实验结果表明,XNORCONV可以将来自MNIST的每张图片分类为$ 18 .97 ,{ rm mu s} $ 18.97 mu s,并达到98.4%的识别精度。与在不同平台上的传统Lenet-5相比,XNORCONV将乘法减少了85.6%,而精度损失仅为0.4%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号