首页> 外文期刊>Computers & Graphics >BOLD3D: A 3D BOLD descriptor for 6Dof pose estimation
【24h】

BOLD3D: A 3D BOLD descriptor for 6Dof pose estimation

机译:BOLD3D:6DOF姿势估计的3D粗体描述符

获取原文
获取原文并翻译 | 示例

摘要

Estimating Six Degree-of-Freedom (6DoF) poses of known objects that are randomly placed in a cluttered bin is a fundamental task in computer vision and robotics, especially for mechanical parts, which are mostly metallic and texture-less. In this work, we focus on the mechanical parts 6DoF pose estimation, in which objects are always texture-less and occluded between each other. To tackle these problems, we propose a novel 3D descriptor, called BOLD3D, to detect and estimate the 6DoF pose in 3D point clouds. Our key observation is that the edge is one of the most important cues for the objects, especially for texture-less mechanical parts. Thus, we propose to utilize pairs of oriented 3D line segments, which are connected by the edge points in well organization, encoding the local geometric structure of the objects. Specifically, the edge points of the input objects are first extracted from 3D point clouds and then connected in order, after employing a discreetly downsample strategy. We then design an effective approach to normalize the 3D line segments orientation. The local geometric structure is represented by the BOLD3D features, each of which is a five-dimensional vector consisting of a pair of directed line segments. Our algorithm accelerates the poses estimation process, due to only the edges of objects are used. A variety of synthetic and real experiments show that our approach is capable of achieving satisfactory pose results with high accuracy and robustness for mechanical parts 6DoF pose estimation, even in the presence of a complex arrangement. (C) 2020 Elsevier Ltd. All rights reserved.
机译:估计六个自由度(6dof)的已知物体姿势,这些物体随机放置在杂乱的箱中是计算机视觉和机器人中的基本任务,特别是对于机械部件,这主要是金属和纹理的。在这项工作中,我们专注于机械部件6dof估计,其中物体始终且彼此之间的纹理和遮挡。为了解决这些问题,我们提出了一种名为Bold3D的新型3D描述符,以检测和估计3D点云中的6dof姿势。我们的主要观察是,边缘是物体最重要的线索之一,尤其是对于纹理的机械部件。因此,我们建议利用由井组织中的边缘点连接的定向3D线段对,编码对象的局部几何结构。具体地,在采用谨慎的下落下策略之后,首先从3D点云提取输入对象的边缘点,然后按顺序提取。然后,我们设计一种有效的方法来标准化3D线段方向。本地几何结构由粗体的特征表示,每个特征是由一对定向线段组成的五维向量。由于仅使用对象的边缘,我们的算法加速了姿势估计过程。各种综合和实验表明,即使在存在复杂的布置的情况下,我们的方法能够以高精度和机械部件姿态姿态造成的高精度和鲁棒性实现令人满意的姿势。 (c)2020 elestvier有限公司保留所有权利。

著录项

  • 来源
    《Computers & Graphics》 |2020年第6期|94-104|共11页
  • 作者单位

    Nanjing Univ Aeronaut & Astronaut Nanjing Peoples R China;

    Nanjing Univ Aeronaut & Astronaut Nanjing Peoples R China;

    Beijing Spacecrafts Beijing Peoples R China;

    Nanjing Univ Aeronaut & Astronaut Nanjing Peoples R China;

    Nanjing Univ Aeronaut & Astronaut Nanjing Peoples R China;

    Chengdu Aircraft Ind Grp Co LTD Chengdu Peoples R China;

    Chengdu Aircraft Ind Grp Co LTD Chengdu Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Pose estimation; 3D Descriptor; Scene understanding; Computer vision;

    机译:姿态估计;3D描述符;现场了解;计算机愿景;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号