首页> 外文期刊>Computers & Graphics >BrainTrawler: A visual analytics framework for iterative exploration of heterogeneous big brain data
【24h】

BrainTrawler: A visual analytics framework for iterative exploration of heterogeneous big brain data

机译:Braintrawler:一种视觉分析框架,用于异构大脑数据的迭代探索

获取原文
获取原文并翻译 | 示例

摘要

In recent years, big brain-initiatives and consortia have created vast resources of publicly available brain data that can be used by neuroscientists for their own research experiments. This includes microscale connectivity data brain-network graphs with billions of edges and vast spatial gene expression resources the representation of tens of thousands genes in brain space. Their joint analysis for higher order relations in structural or functional neuroanatomy would enable the genetic dissection of brain networks on a genome-wide scale. Current experimental workflows involve only time-consuming manual aggregation and extensive graph theoretical analysis of data from different sources, which rarely provide spatial context to operate continuously on different scales.In this paper, we propose BrainTrawler, a task-driven, web-based framework that incorporates visual analytics methods to explore heterogeneous neurobiological data. It facilitates spatial indexing to query large-scale voxel-level connectivity data and gene expression collections in real-time. Relating data to the hierarchical structure of common anatomical atlases enables the retrieval on different anatomical levels. Together with intuitive network visualization, iterative visual queries, and quantitative information this allows the genetic dissection of multimodal networks on local/global scales in a spatial context.We demonstrate the relevance of our approach for neuroscience by exploring social-behavior and memory/learning related functional neuroanatomy in mice. (C) 2019 Elsevier Ltd. All rights reserved.
机译:近年来,大脑倡议和联盟造成了广泛的脑数据资源,可以由神经科学家为自己的研究实验而使用。这包括微观连接数据脑网络图,其中数十亿边缘和巨大的空间基因表达资源表示脑空间中数千基因的表示。它们在结构或功能性神经瘤中的高阶关系的联合分析将使大脑网络的遗传解剖到基因组范围内。目前的实验工作流程涉及耗时的手动聚合和广泛的图形来自不同来源的数据的理论分析,这很少提供在不同的尺度上连续运行的空间上下文。在本文中,我们提出了BraintraWler,任务驱动,基于Web的Web的框架这包括视觉分析方法来探索异质神经生物学数据。它促进了空间索引,以实时查询大规模体素级连接数据和基因表达收集。将数据与常见解剖结构的分层结构相关联能够在不同的解剖水平上检索。与直观的网络可视化,迭代视觉查询和定量信息一起,这允许在空间上下文中对本地/全球范围的多模式网络的遗传解剖。我们通过探索社会行为和记忆/学习与我们的神经科学方法的相关性小鼠功能性神经肿瘤。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号