首页> 外文期刊>Computers & Graphics >BrainTrawler: A visual analytics framework for iterative exploration of heterogeneous big brain data
【24h】

BrainTrawler: A visual analytics framework for iterative exploration of heterogeneous big brain data

机译:BrainTrawler:一个视觉分析框架,用于迭代探索异构大大脑数据

获取原文
获取原文并翻译 | 示例

摘要

In recent years, big brain-initiatives and consortia have created vast resources of publicly available brain data that can be used by neuroscientists for their own research experiments. This includes microscale connectivity data brain-network graphs with billions of edges and vast spatial gene expression resources the representation of tens of thousands genes in brain space. Their joint analysis for higher order relations in structural or functional neuroanatomy would enable the genetic dissection of brain networks on a genome-wide scale. Current experimental workflows involve only time-consuming manual aggregation and extensive graph theoretical analysis of data from different sources, which rarely provide spatial context to operate continuously on different scales.In this paper, we propose BrainTrawler, a task-driven, web-based framework that incorporates visual analytics methods to explore heterogeneous neurobiological data. It facilitates spatial indexing to query large-scale voxel-level connectivity data and gene expression collections in real-time. Relating data to the hierarchical structure of common anatomical atlases enables the retrieval on different anatomical levels. Together with intuitive network visualization, iterative visual queries, and quantitative information this allows the genetic dissection of multimodal networks on local/global scales in a spatial context.We demonstrate the relevance of our approach for neuroscience by exploring social-behavior and memory/learning related functional neuroanatomy in mice. (C) 2019 Elsevier Ltd. All rights reserved.
机译:近年来,大型大脑计划和联合组织创造了大量可公开获得的大脑数据资源,神经科学家可以将其用于自己的研究实验。这包括具有数十亿条边的微型连接数据大脑网络图,以及庞大的空间基因表达资源,这些资源代表着大脑空间中成千上万个基因。他们对结构或功能神经解剖学中更高阶关系的联合分析将使全基因组范围内的大脑网络得以遗传解剖。当前的实验工作流仅涉及耗时的手动汇总和对来自不同来源的数据的广泛图论分析,而很少能提供空间背景以在不同规模上连续运行。本文提出了BrainTrawler,这是一个任务驱动的基于Web的框架结合了视觉分析方法来探索异类神经生物学数据。它有助于空间索引,以实时查询大规模体素级别的连接性数据和基因表达集合。将数据与常见解剖图谱的层次结构相关联,可以在不同的解剖学层面上进行检索。结合直观的网络可视化,迭代的视觉查询和定量信息,可以在空间范围内对局部/全局尺度上的多模式网络进行遗传解剖。我们通过探索社会行为和与记忆/学习相关的方法来证明我们的方法与神经科学的相关性小鼠的功能神经解剖学。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号