首页> 外文期刊>Computers & Graphics >A dimensional reduction guiding deep learning architecture for 3D shape retrieval
【24h】

A dimensional reduction guiding deep learning architecture for 3D shape retrieval

机译:一种用于3D形状检索的降维指导深度学习架构

获取原文
获取原文并翻译 | 示例

摘要

The state-of-the-art shape descriptors are usually lengthy for gaining high retrieval precision. With the rapidly growing number of 3-dimensional models, the retrieval speed becomes a prominent problem in shape retrieval. In this paper, by exploiting the capabilities of the dimensionality reduction methods and the deep convolutional residual network (ResNet), we developed a method for extracting short shape descriptors (with just 2 real numbers, named 2-descriptors) from lengthy descriptors, while keeping or even improving the retrieval precision of the original lengthy descriptors. Specifically, an attraction and repulsion model is devised to strengthen the direct dimensionality reduction results. In this way, the dimensionality reduction results turn into desirable labels for the ResNet. Moreover, to extract the 2 descriptors using ResNet, we transformed it as a classification problem. For this purpose, the range of each component of the dimensionality reduction results (including two components in total) is uniformly divided into n intervals corresponding to n classes. Experiments on 3D shape retrieval show that our method not only accelerates the retrieval speed greatly but also improves the retrieval precisions of the original shape descriptors. (C) 2019 Elsevier Ltd. All rights reserved.
机译:最新的形状描述符通常很长,以获取较高的检索精度。随着3维模型数量的快速增长,检索速度成为形状检索中的突出问题。在本文中,通过利用降维方法和深度卷积残差网络(ResNet)的功能,我们开发了一种从长描述符中提取短形状描述符(只有2个实数,称为2描述符)的方法,同时保持甚至提高原始冗长描述符的检索精度。具体地,设计了吸引和排斥模型以增强直接降维结果。这样,降维结果变成了ResNet的理想标签。此外,为了使用ResNet提取2个描述符,我们将其转换为分类问题。为此,降维结果的每个分量的范围(总共包括两个分量)被均匀地划分为与n个类别相对应的n个间隔。在3D形状检索中的实验表明,我们的方法不仅大大提高了检索速度,而且提高了原始形状描述符的检索精度。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Computers & Graphics》 |2019年第6期|82-91|共10页
  • 作者单位

    Zhejiang Univ, Sch Math, Hangzhou 310027, Zhejiang, Peoples R China;

    Zhejiang Univ, Sch Math, Hangzhou 310027, Zhejiang, Peoples R China|Zhejiang Univ, State Key Lab CAD&CG, Hangzhou 310058, Zhejiang, Peoples R China;

    Zhejiang Univ, State Key Lab CAD&CG, Hangzhou 310058, Zhejiang, Peoples R China;

    Zhejiang Univ, Sch Math, Hangzhou 310027, Zhejiang, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Shape retrieval; Shape descriptor; Dimensionality reduction; ResNet;

    机译:形状检索;形状描述符;降维;ResNet;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号