首页> 外文期刊>Computers & Graphics >A global geometric framework for 3D shape retrieval using deep learning
【24h】

A global geometric framework for 3D shape retrieval using deep learning

机译:使用深度学习进行3D形状检索的全球几何框架

获取原文
获取原文并翻译 | 示例

摘要

Shape representations provide compact, parsimonious shape descriptions that are often used in object recognition and retrieval tasks. In light of the increased processing power of graphics cards and the availability of large-scale datasets, deep neural networks have shown a remarkable performance in numerous computer vision and geometry processing applications. In this paper, we present a deep learning framework for unsupervised 3D shape retrieval with geodesic moments. The proposed method learns deep shape representations using stacked sparse autoencoders in an unsupervised manner. Such discriminative shape descriptors can then be used to compute pairwise dissimilarities between shapes in a dataset, and to find the retrieved set of the most relevant shapes to a given shape query. Experimental evaluation on four standard 3D shape benchmarks demonstrate the competitive performance of our approach, showing that it leads to improved retrieval results in comparison with state-of-the-art techniques. (C) 2018 Elsevier Ltd. All rights reserved.
机译:形状表示提供紧凑,简约的形状描述,通常用于对象识别和检索任务。鉴于图形卡处理能力的提高和大规模数据集的可用性,深度神经网络已在众多计算机视觉和几何处理应用中显示了卓越的性能。在本文中,我们提出了一种具有测地线矩的无监督3D形状检索的深度学习框架。所提出的方法使用无监督的堆叠式稀疏自动编码器学习深度形状表示。然后,可将此类判别形状描述符用于计算数据集中形状之间的成对差异,并找到与给定形状查询最相关的形状的检索集。对四个标准3D形状基准进行的实验评估证明了我们方法的竞争性能,表明与最先进的技术相比,它可以改善检索结果。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号