首页> 外文期刊>Computers & Graphics >3D shape segmentation via shape fully convolutional networks
【24h】

3D shape segmentation via shape fully convolutional networks

机译:通过形状全卷积网络进行3D形状分割

获取原文
获取原文并翻译 | 示例

摘要

We propose a novel fully convolutional network architecture for shapes, denoted by Shape Fully Convolutional Networks (SFCN). 3D shapes are represented as graph structures in the SFCN architecture, based on novel graph convolution and pooling operations, which are similar to convolution and pooling operations used on images. Meanwhile, to build our SFCN architecture in the original image segmentation fully convolutional network (FCN) architecture, we also design and implement a generating operation with bridging function. This ensures that the convolution and pooling operation we have designed can be successfully applied in the original FCN architecture. In this paper, we also present a new shape segmentation approath based on SFCN. Furthermore, we allow more general and challenging input, such as mixed datasets of different categories of shapes which can prove the ability of our generalisation. In our approach, SFCNs are trained triangles-to-triangles by using three low-level geometric features as input. Finally, the feature voting-based multi-label graph cuts is adopted to optimise the segmentation results obtained by SFCN prediction. The experiment results show that our method can effectively learn and predict mixed shape datasets of either similar or different characteristics, and achieve excellent segmentation results. (C) 2017 Elsevier Ltd. All rights reserved.
机译:我们提出了一种新颖的形状完全卷积网络体系结构,由形状完全卷积网络(SFCN)表示。基于新颖的图形卷积和池化操作,类似于在图像上使用的卷积和池化操作,将3D形状表示为SFCN体系结构中的图形结构。同时,为了在原始图像分割全卷积网络(FCN)架构中构建SFCN架构,我们还设计并实现了具有桥接功能的生成操作。这确保了我们设计的卷积和池化操作可以成功地应用于原始FCN体系结构。在本文中,我们还提出了一种基于SFCN的新形状分割方法。此外,我们允许进行更具一般性和挑战性的输入,例如可以证明我们的概括能力的不同类别的形状的混合数据集。在我们的方法中,SFCN通过使用三个低级几何特征作为输入来训练三角形到三角形。最后,采用基于特征投票的多标签图割优化SFCN预测得到的分割结果。实验结果表明,我们的方法可以有效地学习和预测具有相似或不同特征的混合形状数据集,并获得出色的分割结果。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Computers & Graphics》 |2018年第11期|182-192|共11页
  • 作者单位

    Nanjing Univ, Dept Comp Sci & Technol, State Key Lab Novel Software Technol, Nanjing 210023, Jiangsu, Peoples R China;

    Nanjing Univ, Dept Comp Sci & Technol, State Key Lab Novel Software Technol, Nanjing 210023, Jiangsu, Peoples R China;

    Nanjing Univ, Dept Comp Sci & Technol, State Key Lab Novel Software Technol, Nanjing 210023, Jiangsu, Peoples R China;

    Nanjing Univ, Dept Comp Sci & Technol, State Key Lab Novel Software Technol, Nanjing 210023, Jiangsu, Peoples R China;

    Nanjing Univ, Dept Comp Sci & Technol, State Key Lab Novel Software Technol, Nanjing 210023, Jiangsu, Peoples R China;

    Nanjing Univ Posts & Telecommun, Coll Internet Things, Minist Educ, Key Lab Broadband Wireless Commun & Sensor Networ, Nanjing 210003, Jiangsu, Peoples R China;

    Nanjing Univ, Dept Comp Sci & Technol, State Key Lab Novel Software Technol, Nanjing 210023, Jiangsu, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号