首页> 外文期刊>Computers & Graphics >3D shape segmentation via shape fully convolutional networks
【24h】

3D shape segmentation via shape fully convolutional networks

机译:通过形状全卷积网络进行3D形状分割

获取原文
获取原文并翻译 | 示例

摘要

HighlightsWe proposed a shape fully convolutional network (SFCN) for 3D shapes.We achieved effective convolution and pooling operations on 3D shapes.We outperformed the sate-of-the-art in shape segmentation by using SFCN.Achieving excellent segmentation results on predicting shapes of mixed categories.Graphical abstractDisplay OmittedAbstractWe propose a novel fully convolutional network architecture for shapes, denoted byShape Fully Convolutional Networks (SFCN). 3D shapes are represented as graph structures in the SFCN architecture, based on novelgraph convolution and pooling operations, which are similar to convolution and pooling operations used on images. Meanwhile, to build our SFCN architecture in the original image segmentation fully convolutional network (FCN) architecture, we also design and implement agenerating operationwith bridging function. This ensures that the convolution and pooling operation we have designed can be successfully applied in the original FCN architecture. In this paper, we also present a new shape segmentation approach based on SFCN. Furthermore, we allow more general and challenging input, such asmixed datasets of different categories of shapeswhich can prove the ability of our generalisation. In our approach, SFCNs are trained triangles-to-triangles by using three low-level geometric features as input. Finally, the feature voting-based multi-label graph cuts is adopted to optimise the segmentation results obtained by SFCN prediction. The experiment results show that our method can effectively learn and predict mixed shape datasets of either similar or different characteristics, and achieve excellent segmentation results.
机译: 突出显示 我们为3D形状提出了形状完全卷积网络(SFCN)。 我们在3D形状上实现了有效的卷积和池化操作。 我们跑赢​​了 实现出色的段预测混合类别形状的结果。 图形摘要 省略显示 摘要 我们提出了一本小说形状的完全卷积网络体系结构,由形状完全卷积网络(SFCN)表示。基于新颖的图卷积和池化操作,SFCN体系结构中的3D形状表示为图结构,类似于图像上的卷积和池化操作。同时,为了在原始图像分割全卷积网络(FCN)架构中构建SFCN架构,我们还设计并实现了具有桥接功能的生成操作。这确保了我们设计的卷积和池化操作可以成功地应用于原始FCN体系结构。在本文中,我们还提出了一种基于SFCN的新形状分割方法。此外,我们允许使用更具通用性和挑战性的输入,例如不同形状类别的混合数据集,可以证明我们的概括能力。在我们的方法中,SFCN通过使用三个低级几何特征作为输入来训练三角形到三角形。最后,采用基于特征投票的多标签图割优化SFCN预测得到的分割结果。实验结果表明,该方法可以有效地学习和预测具有相似或不同特征的混合形状数据集,并获得良好的分割效果。

著录项

  • 来源
    《Computers & Graphics》 |2018年第2期|128-139|共12页
  • 作者单位

    State Key Lab for Novel Software Technology, Department of Computer Science and Technology, Nanjing University;

    State Key Lab for Novel Software Technology, Department of Computer Science and Technology, Nanjing University;

    State Key Lab for Novel Software Technology, Department of Computer Science and Technology, Nanjing University;

    State Key Lab for Novel Software Technology, Department of Computer Science and Technology, Nanjing University;

    State Key Lab for Novel Software Technology, Department of Computer Science and Technology, Nanjing University;

    Key Lab of Broadband Wireless Communication and Sensor Network Technology of Ministry of Education, College of Internet of Things , Nanjing University of Posts and Telecommunications;

    State Key Lab for Novel Software Technology, Department of Computer Science and Technology, Nanjing University;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号