首页> 外文期刊>Computers & Graphics >An image-based, trainable symbol recognizer for hand-drawn sketches
【24h】

An image-based, trainable symbol recognizer for hand-drawn sketches

机译:基于图像的可训练符号识别器,用于手绘草图

获取原文
获取原文并翻译 | 示例

摘要

We describe a trainable, hand-drawn symbol recognizer based on a multi-layer recognition scheme. Symbols are internally represented as binary templates. An ensemble of four different classifiers compares and ranks definition symbols according to their similarity to the unknown symbol. The scores of the individual classifiers are aggregated to produce a combined score for each definition. The definition with the best combined score is assigned to the unknown symbol. All four classifiers use template-matching techniques to compute similarity (and dissimilarity) between symbols. Ordinarily, template-matching is sensitive to rotation, and existing solutions for rotation invariance are too expensive for interactive performance. We have developed a fast technique that uses a polar coordinate representation to achieve rotational invariance. This technique is applied prior to the multi-classifier recognition step to determine the best alignment of the unknown with each definition. One advantage of this technique is that it filters out the bulk of unlikely definitions, thereby reducing the number of definitions the multi-classifier recognition step must consider.
机译:我们描述了一种基于多层识别方案的可训练的手绘符号识别器。符号在内部表示为二进制模板。四个不同分类器的集合根据定义符号与未知符号的相似度对它们进行比较和排序。汇总各个分类器的分数,以生成每个定义的组合分数。具有最佳组合分数的定义将分配给未知符号。所有四个分类器均使用模板匹配技术来计算符号之间的相似度(和相异度)。通常,模板匹配对旋转敏感,而现有的旋转不变性解决方案对于交互性能而言过于昂贵。我们已经开发了一种使用极坐标表示来实现旋转不变性的快速技术。在多分类器识别步骤之前应用此技术,以确定每个定义的未知数的最佳对齐方式。该技术的一个优势在于,它可以过滤掉大量不太可能的定义,从而减少了多分类器识别步骤必须考虑的定义数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号