首页> 外文期刊>Computers & Graphics >Scalable GPU rendering of CSG models
【24h】

Scalable GPU rendering of CSG models

机译:CSG模型的可扩展GPU渲染

获取原文
获取原文并翻译 | 示例

摘要

Existing methods that are able to interactively render complex CSG objects with the aid of GPUs are both image based and severely bandwidth limited. In this paper we present a new approach to this problem whose main advantage is its capability to efficiently scale the dependency on CPU instruction throughput, memory bandwidth and GPU instruction throughput. Here, we render CSG objects composed of convex primitives by combining spatial subdivision of the CSG object and GPU ray-tracing methods: the object is subdivided until it is locally "simple enough" to be rendered effectively on the GPU. Our results indicate that our method is able to share the load between the CPU and the GPU more evenly than previous methods, in a way that depends less on memory bandwidth and more on GPU instruction throughput for up to moderately sized CSG models. Even though the same results indicate that the present method is eventually becoming more bus bandwidth and CPU limited with the current state of the art GPUs, especially for extremely complex models, our method presents a solid recipe for escaping this problem in the future by a rescale of the dependency on CPU/memory bandwidth vs. GPU instruction throughput. With this, greater increases in performance are to be expected by adapting our method for newer generation of graphics hardware, as instruction throughput has historically increased at a greater pace than both bus bandwidth and internal GPU bandwidth.
机译:能够借助GPU交互式渲染复杂CSG对象的现有方法都是基于图像的,并且带宽受到严重限制。在本文中,我们提出了一种解决此问题的新方法,其主要优点是能够有效扩展对CPU指令吞吐量,内存带宽和GPU指令吞吐量的依赖性。在这里,我们通过结合CSG对象的空间细分和GPU光线跟踪方法来渲染由凸形图元组成的CSG对象:将对象细分,直到它在本地“足够简单”以在GPU上有效地渲染为止。我们的结果表明,对于中等大小的CSG模型,我们的方法与以前的方法相比,能够更均匀地分担CPU和GPU之间的负载,而对内存带宽的依赖性较小,而对GPU指令吞吐量的依赖性更大。即使相同的结果表明当前方法最终会变得越来越总线带宽和CPU限制,尤其是对于极其复杂的模型,尤其是对于非常复杂的模型,我们的方法仍提供了可靠的解决方案,可以在将来通过重新缩放来解决此问题对CPU /内存带宽的依赖性与GPU指令吞吐量的关系。因此,通过将我们的方法用于新一代图形硬件,可以预期性能会进一步提高,因为历史上指令吞吐量的增长速度超过了总线带宽和内部GPU带宽。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号