首页> 外文期刊>Computers & Graphics >Barycentric coordinates computation in homogeneous coordinates
【24h】

Barycentric coordinates computation in homogeneous coordinates

机译:均质坐标中的重心坐标计算

获取原文
获取原文并翻译 | 示例

摘要

Homogeneous coordinates are often used in computer graphics and computer vision applications especially for the representation of geometric transformations. The homogeneous coordinates enable us to represent translation, rotation, scaling and projection operations in a unique way and handle them properly. Today's graphics hardware based on GPU offers a very high computational power using pixel and fragment shaders not only for the processing of graphical elements, but also for the general computation using GPU as well. It is well known that points, triangles and strips of triangles are mostly used in computer graphics processing. Generally, triangles and tetrahedra are mostly represented by vertices. Several tests like "point inside..." or "intersection of..." are very often used in applications. On the other hand, barycentric coordinates in E2 or E3 can be used to implement such tests, too. Nevertheless, in both cases division operations are used that potentially lead to the instability of algorithms. The main objective of this paper is to show that if the vertices of the given polygon and/or a point itself are given in homogeneous coordinates the barycentric coordinates can be computed directly without transferring them from the homogeneous [w≠1] to the Euclidean coordinates. Instead of solving a linear system of equations, the cross-product can be used and the division operation is not needed. This is quite convenient approach for GPU computation.
机译:均匀坐标通常用于计算机图形学和计算机视觉应用中,尤其是用于表示几何变换。齐次坐标使我们能够以独特的方式表示平移,旋转,缩放和投影操作并正确处理它们。当今基于GPU的图形硬件使用像素和片段着色器提供了非常高的计算能力,不仅用于处理图形元素,而且还用于使用GPU进行常规计算。众所周知,点,三角形和三角形带主要用于计算机图形处理中。通常,三角形和四面体主要由顶点表示。在应用程序中经常使用诸如“指向内部...”或“ ...的交集”之类的几种测试。另一方面,E2或E3中的重心坐标也可以用于执行此类测试。然而,在两种情况下,都使用除法运算,这有可能导致算法不稳定。本文的主要目的是表明,如果给定多边形的顶点和/或点本身在齐次坐标中给出,则重心坐标可以直接计算而无需将它们从齐次[w≠1]转换为欧几里得坐标。代替求解线性方程组,可以使用叉积,并且不需要除法运算。这是用于GPU计算的非常方便的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号