首页> 外文期刊>Computers & geosciences >A Revised Automated Proximity And Conformity Analysis Method To Compare Predicted And Observed Spatial Boundaries Of Geologic Phenomena
【24h】

A Revised Automated Proximity And Conformity Analysis Method To Compare Predicted And Observed Spatial Boundaries Of Geologic Phenomena

机译:一种修正的自动接近度和整合度分析方法,用于比较预测和观察到的地质现象的空间边界

获取原文
获取原文并翻译 | 示例

摘要

Quantitative assessment of the level of agreement between model-predicted and field-observed geologic data is crucial to calibrate and validate numerical landscape models. Application of Geographic Information Systems (GIS) provides an opportunity to integrate model and field data and quantify their levels of correspondence. Napieralski et al. [Comparing predicted and observed spatial boundaries of geologic phenomena: Automated Proximity and Conformity Analysis (APCA) applied to ice sheet reconstructions. Computers and Geosciences 32, 124-134] introduced an Automated Proximity and Conformity Analysis (APCA) method to compare model-predicted and field-observed spatial boundaries and used it to quantify the level of correspondence between predicted ice margins from ice sheet models and field observations from end moraines. However, as originally formulated, APCA involves a relatively large amount of user intervention during the analysis and results in an index to quantify the level of correspondence that lacks direct statistical meaning. Here, we propose a revised APCA approach and a more automated and statistically robust way to quantify the level of correspondence between model predictions and field observations. Specifically, the mean and standard deviation of distances between model and field boundaries are used to quantify proximity and conformity, respectively. An illustration of the revised method comparing modeled ice margins of the Fennoscandian Ice Sheet with observed end moraines of the Last Glacial Maximum shows that this approach provides a more automated and statistically robust means to quantify correspondence than the original APCA. The revised approach can be adopted for a wide range of geoscience issues where comparisons of model-predicted and field-observed spatial boundaries are useful, including mass movement and flood extents.
机译:对模型预测的和实地观察的地质数据之间的一致性水平进行定量评估对于校准和验证数字景观模型至关重要。地理信息系统(GIS)的应用提供了整合模型和现场数据并量化其对应程度的机会。 Napieralski等。 [比较预测和观察到的地质现象的空间边界:自动接近和整合分析(APCA)应用于冰盖重建。 Computers and Geosciences 32,124-134]引入了一种自动接近度和一致性分析(APCA)方法,用于比较模型预测的和野外观察到的空间边界,并用于量化从冰盖模型和野外预测的冰边界之间的对应程度。从末节的观察。但是,按照最初的公式,APCA在分析过程中涉及相对大量的用户干预,并导致一个指标来量化缺乏直接统计意义的对应程度。在这里,我们提出了一种经过修订的APCA方法和一种更加自动化且统计上更可靠的方法来量化模型预测与现场观测之间的对应程度。具体来说,模型边界和场边界之间的距离的均值和标准差分别用于量化接近度和一致性。修改后的方法比较了Fennoscandian冰原的模型冰缘与观测到的末次冰期最大值的冰mo,表明该方法比原始APCA提供了一种更加自动化且统计上更可靠的方法来量化对应关系。经修订的方法可用于广泛的地球科学问题,在这些问题中,比较模型预测的和实地观察的空间边界非常有用,包括质量运动和洪水范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号