首页> 外文期刊>Computers,environment and urban systems >Vehicle navigation in GPS denied environment for smart cities using vision sensors
【24h】

Vehicle navigation in GPS denied environment for smart cities using vision sensors

机译:使用视觉传感器的GPS在GPS拒绝环境的车辆导航

获取原文
获取原文并翻译 | 示例

摘要

The transformation of the existing urban environment in digital smart cities has become a reality, which aimed to transform daily life activities into automated processes for the ease in human efforts and reduction in effort time. Vision based sensors are commonly used for monitoring cities, which acquire a huge amount of diverse data and store them for further computer vision processing. In this article, we aim to explore whether and how to navigate a vehicle using cost effective means (vision based sensors) in smart cities without using the calibrated sensors and Global Positioning System (GPS). Vehicle localization and navigation require on-board calibrated sensors and reliable GPS link. In an urban environment, these sensors fail to perform well in: indoor environment (tunnels), crowded and congested areas, and severe weather conditions. The most effective technique used for vision based navigation depends on image registration. The challenges of a successful and effective registration are: sufficient illumination in the environment, dominance of static scene over moving objects, high textured ratio to allow apparent motion and necessary scene overlap between consecutive frames. We proposed a novel approach for vehicle navigation based on vision sensors using modified normalized phase correlation. In the proposed approach, the distinction between textured and texture less surface is based on the identification of corresponding features. In this regard, the Gram polynomial basis function is used to remove the Gibbs error problem generated due to peak in the registration process. Similarly, entropy based tensor approximation is used to remove outliers for robust image registration. Experiments performed in real time during test drives show excellent results with respect to estimated position accuracy in comparison with GPS calculated data.
机译:数字智能城市现有城市环境的转型已成为现实,旨在将日常生活活动转化为自动化流程,以便于人力努力和减少努力时间。基于视觉的传感器通常用于监控城市,该城市获取大量不同的数据,并将其存储用于进一步的计算机视觉处理。在本文中,我们的目标是探索是否在智能城市中使用成本有效的手段(视觉基于Vision的传感器)导航车辆,而无需使用校准的传感器和全球定位系统(GPS)。车辆本地化和导航需要板载校准的传感器和可靠的GPS链路。在城市环境中,这些传感器无法在:室内环境(隧道),拥挤和拥挤的地区,以及恶劣的天气条件下。基于视觉的导航的最有效技术取决于图像配准。成功和有效的注册的挑战是:环境中足够的照明,静态场景的优势在移动物体上,高纹理比率,以允许表观运动和必要的场景在连续帧之间重叠。我们提出了一种基于使用修改的归一化相位相关的视觉传感器的车辆导航新方法。在所提出的方法中,纹理和质地较少表面之间的区别基于对应特征的识别。在这方面,克多项式基础函数用于除去由于登记过程中峰值而产生的GIBBS误差问题。类似地,基于熵的张量近似用于删除强大的图像配准的异常值。在测试驱动器期间实时执行的实验表明,与GPS计算的数据相比,相对于估计的位置精度来表现出优异的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号