首页> 外文期刊>Computers and Geotechnics >Probabilistic parameter estimation and predictive uncertainty based on field measurements for unsaturated soil slope
【24h】

Probabilistic parameter estimation and predictive uncertainty based on field measurements for unsaturated soil slope

机译:基于现场测量的非饱和土边坡概率参数估计和预测不确定性

获取原文
获取原文并翻译 | 示例

摘要

A key issue in assessment of rainfall-induced slope failure is a reliable evaluation of pore water pressure distribution and its variations during rainstorm, which in turn requires accurate estimation of soil hydraulic parameters. In this study, the uncertainties of soil hydraulic parameters and their effects on slope stability prediction are evaluated, within the Bayesian framework, using the field measured temporal pore-water pressure data. The probabilistic back analysis and parameter uncertainty estimation is conducted using the Markov Chain Monte Carlo simulation. A case study of a natural terrain site is presented to illustrate the proposed method. The 95% total uncertainty bounds for the calibration period are relatively narrow, indicating an overall good performance of the infiltration model for the calibration period. The posterior uncertainty bounds of slope safety factors are much narrower than the prior ones, implying that the reduction of uncertainty in soil hydraulic parameters significantly reduces the uncertainty of slope stability.
机译:评估降雨引起的边坡破坏的一个关键问题是对暴雨期间孔隙水压力分布及其变化的可靠评估,而这反过来又需要对土壤水力参数的准确估算。在这项研究中,使用现场测得的瞬时孔隙水压力数据,在贝叶斯框架内评估了土壤水力参数的不确定性及其对边坡稳定性预测的影响。概率逆分析和参数不确定性估计是使用马尔可夫链蒙特卡罗模拟进行的。以自然地形为例,说明了该方法。校准期间95%的总不确定性范围相对较窄,这表明渗透模型在校准期间总体上表现良好。边坡安全系数的后验不确定性边界比以前的要窄得多,这意味着减少土壤水力参数的不确定性会显着降低边坡稳定性的不确定性。

著录项

  • 来源
    《Computers and Geotechnics》 |2013年第3期|72-81|共10页
  • 作者单位

    Center for Marine Ceotechnical Engineering, State Key Laboratory of Ocean Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, China;

    Department of Civil Engineering, Shanghai Jiaotong University, 1954 Huashan Road, Shanghai, China;

    Center for Marine Ceotechnical Engineering, State Key Laboratory of Ocean Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, China;

    Center for Marine Ceotechnical Engineering, State Key Laboratory of Ocean Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, China;

    Center for Marine Ceotechnical Engineering, State Key Laboratory of Ocean Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    rainfall infiltration; unsaturated soils; slope failure; bayesian theory; markov chain simulation;

    机译:降雨入渗非饱和土壤边坡破坏;贝叶斯理论马可夫链模拟;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号