首页> 外文期刊>Computer vision and image understanding >Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
【24h】

Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories

机译:从几个训练示例中学习生成的视觉模型:在101个对象类别上测试的增量贝叶斯方法

获取原文
获取原文并翻译 | 示例

摘要

Current computational approaches to learning visual object categories require thousands of training images, are slow, cannot learn in an incremental manner and cannot incorporate prior information into the learning process. In addition, no algorithm presented in the literature has been tested on more than a handful of object categories. We present an method for learning object categories from just a few training images. It is quick and it uses prior information in a principled way. We test it on a dataset composed of images of objects belonging to 101 widely varied categories. Our proposed method is based on making use of prior information, assembled from (unrelated) object categories which were previously learnt. A generative probabilistic model is used, which represents the shape and appearance of a constellation of features belonging to the object. The parameters of the model are learnt incrementally in a Bayesian manner. Our incremental algorithm is compared experimentally to an earlier batch Bayesian algorithm, as well as to one based on maximum likelihood. The incremental and batch versions have comparable classification performance on small training sets, but incremental learning is significantly faster, making real-time learning feasible. Both Bayesian methods outperform maximum likelihood on small training sets.
机译:当前用于学习视觉对象类别的计算方法需要成千上万张训练图像,速度慢,无法以增量方式学习并且无法将先验信息纳入学习过程。另外,没有对文献中提出的算法进行过少数对象类别的测试。我们提出了一种仅从几个训练图像中学习物体类别的方法。它快速且有原则地使用先验信息。我们在一个数据集上对其进行测试,该数据集由属于101个类别广泛的对象的图像组成。我们提出的方法是基于先前信息的利用,这些信息是从先前学习过的(不相关)对象类别中组合而成的。使用生成概率模型,该模型表示属于对象的一组特征的形状和外观。以贝叶斯方式逐步学习模型的参数。我们将增量算法与较早的批处理贝叶斯算法以及基于最大似然的贝叶斯算法进行了实验比较。增量版本和批处理版本在小型训练集上具有可比的分类性能,但是增量学习明显更快,从而使实时学习变得可行。在小型训练集上,两种贝叶斯方法均胜过最大可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号