首页> 外文期刊>Computer vision and image understanding >Optical flow based super-resolution: A probabilistic approach
【24h】

Optical flow based super-resolution: A probabilistic approach

机译:基于光流的超分辨率:一种概率方法

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with the computation of a single super-resolution image from a set of low-resolution images, where the motion fields are not constrained to be parametric. In our approach, the inversion process, in which the super-resolved image is inferred from the input data, is interleaved with the computation of a set of dense optical flow fields. The case of arbitrary motion presents several significant challenges. First of all, the super-resolution setting dictates that the optic flow computations must be very precise. Furthermore, we have to consider the possibility that certain parts of the scene, which are visible in the super-resolved image, are occluded in some of the input images. Such occlusions must be identified and dealt with in the restoration process. We propose a Bayesian approach to tackle these problems. In this framework, the input images are regarded as sub-sampled and noisy versions of the unknown high-quality image. Also, the input data is considered incomplete, in the sense that we do not know which pixels from the evolving super-resolution image are occluded in particular images from the input set. This will be modelled by introducing so-called visibility maps, which are treated as hidden variables. We describe an Expectation-Maximisation (EM) algorithm, which iterates between estimating values for the hidden quantities, and optimising the flow-fields and the super-resolution image. The approach is illustrated with a synthetic and two challenging real-world examples.
机译:本文讨论了从一组低分辨率图像中计算单个超分辨率图像的情况,其中运动场不限于参数化。在我们的方法中,从输入数据中推断出超分辨图像的反演过程与一组密集的光流场的计算交织在一起。任意运动的情况提出了几个重大挑战。首先,超分辨率设置要求光流计算必须非常精确。此外,我们必须考虑在某些输入图像中遮挡场景的某些部分(在超分辨图像中可见)的可能性。必须在恢复过程中识别并处理此类咬合。我们提出一种贝叶斯方法来解决这些问题。在此框架中,输入图像被视为未知高质量图像的子采样和噪声版本。同样,在我们不知道来自演化超分辨率图像的哪些像素在来自输入集的特定图像中被遮挡的意义上,输入数据被认为是不完整的。这将通过引入所谓的可见性图(被视为隐藏变量)来建模。我们描述了一种期望最大化(EM)算法,该算法在估计隐藏量的值之间进行迭代,并优化流场和超分辨率图像。通过综合和两个具有挑战性的真实示例说明了该方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号