首页> 外文期刊>Biomedical signal processing and control >Low dose 4D-CT super-resolution reconstruction via inter-plane motion estimation based on optical flow
【24h】

Low dose 4D-CT super-resolution reconstruction via inter-plane motion estimation based on optical flow

机译:基于光流的平面间运动估计,低剂量4D-CT超分辨率重建

获取原文
获取原文并翻译 | 示例

摘要

In order to obtain the dynamic intuitive image of the patient's internal organs movement and minimize the potential risks of X-ray radiation at the same time, low dose four-dimensional computed tomography (4D-CT) has attracted a considerable interest in the high precision radiation therapy. But some susceptible artifacts, including device-dependent, image reconstruction times and patient's respiratory pattern, usually cause an inter-plane thickness that is much greater than intra-plane voxel resolutions. In this study, to estimate the respiratory motion and enhance the inter-plane resolution of multi-plane computed tomography (CT) images, a joint optimization framework was proposed using the combined local and global (CLG) variational optical flow and improved non-local iterative back projection (NLIBP). Note that, the premise of this work is that the anatomical information missing in one particular phase can be recovered from other phases in CT images. First, CLG variational optical flow model was constructed to estimate the respiratory motion (i.e., the optical flow fields) between different phases at the corresponding voxel positions, and then was solved by the fast alternating direction method of multipliers (ADMM). Secondly, the improved NLIBP algorithm characterized by non-local mean filter and image fusion strategy was employed to reconstruct high resolution (HR) inter-plane images based on the calculated motion fields. Finally, we explored different hyperparameter settings to achieve a good trade-off between the super resolution (SR) reconstruction performance and computational efficiency, and indicated the success of CLG variational optical flow method for estimating the displacement field between images. Experimental results on public lung 4D-CT datasets demonstrated that this proposed method is able to more effectively enhance texture structures while preserving edges, and outperforms current state-of-the-art methods both quantitatively and qualitatively. (C) 2020 Elsevier Ltd. All rights reserved.
机译:为了获得患者内部器官运动的动态直观形象,同时最小化X射线辐射的潜在风险,低剂量四维计算断层扫描(4D-CT)对高精度引起了相当大的兴趣放射治疗。但是,一些易感伪像,包括依赖于设备的图像重建时间和患者的呼吸图案,通常会导致平面间的厚度远远大于内部体内体素分辨率。在本研究中,为了估算呼吸运动并增强多平面计算断层扫描(CT)图像的平面间分辨率,使用组合的本地和全局(CLG)变分光流提出了联合优化框架,并改善了非本地迭代后投影(NLIBP)。注意,这项工作的前提是可以从CT图像中的其他相位恢复在一个特定阶段中缺失的解剖信息。首先,构造CLG变分光流模型以估计相应的体素位置处的不同相位之间的呼吸运动(即,光学流场),然后通过乘法器(ADMM)的快速交替方向方法来解决。其次,采用了由非局部均值滤波器和图像融合策略特征的改进的NLIBP算法来重建基于计算出的运动场的高分辨率(HR)平面图像。最后,我们探讨了不同的高参数设置,在超分辨率(SR)重建性能和计算效率之间实现了良好的权衡,并表明了CLG变分光流量方法的成功,用于估计图像之间的位移场。公共肺4D-CT数据集上的实验结果证明,该提出的方法能够更有效地增强纹理结构,同时保持边缘,并且可以定量和定性地优于最新的方法。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号