首页> 外文期刊>Computer vision and image understanding >Fine-grained action recognition of boxing punches from depth imagery
【24h】

Fine-grained action recognition of boxing punches from depth imagery

机译:深度图像对拳击拳的细粒度动作识别

获取原文
获取原文并翻译 | 示例

摘要

Competitive sporting environments demand reliable statistics on an athlete's performance to measure an athlete's actions during competition, and to differentiate between the fine-grained actions performed. This is especially true for combat sports such as boxing where the variations observed between the main punching actions are subtle, making automatic classification of movements extremely difficult. This paper presents a robust framework for the automatic classification of a boxer's punches. Overhead depth imagery is employed to alleviate challenges associated with occlusions, and robust body-part tracking is developed for the noisy time-of-flight sensors. Punch recognition is addressed through multi-class Support Vector Machine (SVM) and Random Forest classifiers using combinations of features. A coarse-to-fine hierarchical SVM classifier is presented in this paper based on prior knowledge of boxing punches. This framework has been applied to boxing image sequences taken at the Australian Institute of Sport with 14 elite boxers. Results demonstrate the effectiveness of the action recognition method, with the hierarchical SVM classifier yielding a 97.3% accuracy improving on the recent state-of-the-art action recognition systems.
机译:竞争性运动环境要求对运动员的表现进行可靠的统计,以衡量运动员在比赛中的动作,并区分所执行的细粒度动作。对于拳击等格斗运动尤为如此,主要拳击动作之间观察到的变化非常细微,因此很难对动作进行自动分类。本文为拳击手拳的自动分类提供了一个强大的框架。架空深度图像用于缓解与遮挡相关的挑战,并且为嘈杂的飞行时间传感器开发了强大的身体部位跟踪功能。使用功能组合的多类支持向量机(SVM)和随机森林分类器可解决打卡识别。基于拳击拳的先验知识,本文提出了一种从粗到细的分层SVM分类器。该框架已应用于由14名精英拳击手在澳大利亚体育学院拍摄的拳击图像序列。结果证明了动作识别方法的有效性,分层SVM分类器在最新的最新动作识别系统上提高了97.3%的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号