首页> 外文期刊>Computer Vision, IET >Co-occurrence matching of local binary patterns for improving visual adaption and its application to smoke recognition
【24h】

Co-occurrence matching of local binary patterns for improving visual adaption and its application to smoke recognition

机译:局部二进制模式的共现匹配以改善视觉适应性及其在烟雾识别中的应用

获取原文
获取原文并翻译 | 示例

摘要

It is challenging to recognize smoke from visual scenes due to large variations of smoke colors, textures and shapes. To improve robustness, we propose a novel feature extraction method based on similarity and dissimilarity matching measures of Local Binary Patterns (LBP). Given two bit-sequences of an LBP code pair, the similarity and dissimilarity matching measures are defined as the ratios of the 1-1 bitwise matching number to the 0-0 bitwise matching number and the 1-0 number to the 0-1 number, respectively. To capture local code variations, we calculate the measures between LBP codes of a center pixel and its neighbors. Then we compare each measure with its global mean to propose Similarity Matching based Local Binary Patterns (SMLBP) and Dissimilarity Matching based Local Binary Patterns (DMLBP). Since SMLBP and DMLBP extract spatial variations of the 1st order LBP codes, they actually represent the 2nd order variations of pixel values. Furthermore, we adopt different mapping modes and multi-scale neighborhoods to obtain rotation and scale invariances. Finally, we concatenate the histograms of LBP, SMLBP and DMLBP to generate a feature vector containing 1st and 2nd order information. Experiments show that our method obviously outperforms existing methods.
机译:由于烟雾颜色,纹理和形状的巨大差异,从视觉场景中识别烟雾是一项挑战。为了提高鲁棒性,我们提出了一种基于局部二值模式(LBP)的相似性和相异性匹配度量的新颖特征提取方法。给定一个LBP码对的两个比特序列,相似性和不相似性匹配度量定义为1-1逐位匹配数与0-0逐位匹配数和1-0数与0-1数之比, 分别。为了捕获本地代码变化,我们计算了中心像素及其邻居的LBP代码之间的度量。然后,我们将每个量度与其全局平均值进行比较,以提出基于相似度匹配的局部二进制模式(SMLBP)和基于异质性匹配的局部二进制模式(DMLBP)。由于SMLBP和DMLBP提取了1阶LBP码的空间变化,因此它们实际上代表了像素值的2阶变化。此外,我们采用不同的映射模式和多尺度邻域来获得旋转和尺度不变性。最后,我们将LBP,SMLBP和DMLBP的直方图连接起来以生成包含一阶和二阶信息的特征向量。实验表明,我们的方法明显优于现有方法。

著录项

  • 来源
    《Computer Vision, IET》 |2019年第2期|178-187|共10页
  • 作者单位

    Shanghai Normal Univ, Coll Informat Mech & Elect Engn, Shanghai 201418, Peoples R China|Jiangxi Univ Finance & Econ, Sch Informat Technol, Nanchang 330032, Jiangxi, Peoples R China;

    Jiangxi Agr Univ, Vocat Sch Teachers & Technol, Nanchang 330045, Jiangxi, Peoples R China;

    Jiangxi Univ Finance & Econ, Sch Informat Technol, Nanchang 330032, Jiangxi, Peoples R China;

    Northwestern Polytech Univ, Sch Mech Engn, Xian 710072, Shaanxi, Peoples R China|Northwestern Polytech Univ, Ctr Opt Magery Anal & Learning OPTIMAL, Xian 710072, Shaanxi, Peoples R China;

    Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Shaanxi, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号