首页> 外文期刊>Computer vision and image understanding >Encoding pairwise Hamming distances of Local Binary Patterns for visual smoke recognition
【24h】

Encoding pairwise Hamming distances of Local Binary Patterns for visual smoke recognition

机译:编码局部二进制模式的成对汉明距离以进行视觉烟雾识别

获取原文
获取原文并翻译 | 示例

摘要

To achieve scale invariance, existing methods based on multi-scale local binary patterns (LBP) usually concatenate histograms of LBP codes from different scales. Direct concatenation of histograms is very simple and computationally efficient, but it cannot well model the spatial relationship of LBP codes across scales. Aiming at modeling scale-level variations of LBP codes, we measure and encode the relationship between a pair of LBP codes at the same position from two scales. Gaussian filters are applied to generate the scale space of an image, and original LBP codes are extracted on each scale. The Hamming distance between a pair of LBP codes is used to measure variations of LBP codes across scales. To incorporate the scale-level variations of LBPs into codes, we encode the Hamming distance measures in the same way as LBP to generate a novel code, called Pairwise Comparing Local Binary Patterns (PCLBP). To achieve rotation invariance, LBP and PCLBP codes are aligned to the direction with the maximum magnitude of local differences between a center pixel and its neighbors. To improve reliability of the alignments, we also propose a circular Gaussian smoothing method to remove noise in local differences. Finally, we concatenate the histograms of aligned PCLBP and LBP codes to obtain rotation and scale invariant descriptors for smoke classification. Extensive experiments show that our method obviously outperforms existing LBP variants on smoke datasets, and also achieves outstanding performance on other datasets.
机译:为了实现尺度不变性,基于多尺度局部二进制模式(LBP)的现有方法通常将不同尺度的LBP代码直方图连接起来。直方图的直接级联非常简单且计算效率高,但是它不能很好地模拟LBP代码在各个尺度上的空间关系。为了模拟LBP代码的尺度级别变化,我们从两个尺度上测量并编码了在同一位置的一对LBP代码之间的关系。应用高斯滤波器生成图像的比例空间,并在每个比例上提取原始LBP代码。一对LBP代码之间的汉明距离用于测量LBP代码在各个刻度上的变化。为了将LBP的尺度级变化合并到代码中,我们以与LBP相同的方式对汉明距离度量进行编码,以生成一种新颖的代码,称为成对比较局部二进制模式(PCLBP)。为了实现旋转不变性,LBP和PCLBP代码与中心像素与其相邻像素之间局部差异的最大大小的方向对齐。为了提高路线的可靠性,我们还提出了一种圆形高斯平滑方法,以消除局部差异中的噪声。最后,我们将对齐的PCLBP和LBP代码的直方图连接起来,以获得用于烟气分类的旋转和尺度不变描述符。大量实验表明,我们的方法明显优于烟雾数据集上的现有LBP变体,并且在其他数据集上也具有出色的性能。

著录项

  • 来源
    《Computer vision and image understanding》 |2019年第1期|43-53|共11页
  • 作者单位

    College of Information, Mechanical and Electrical Engineering, Shanghai Normal University|School of Information Technology, Jiangxi University of Finance and Economics;

    Vocational School of Teachers and Technology, Jiangxi Agricultural University;

    School of Information Technology, Jiangxi University of Finance and Economics;

    School of Information Technology, Jiangxi University of Finance and Economics|School of Mathematics and Computer Science, Jiangxi Science and Technology Normal University;

    School of Automation, Xi’an University of Posts & Telecommunications;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Scale invariance; Rotation invariance; Local binary pattern; Pairwise comparing LBP; Smoke recognition;

    机译:尺度不变性;旋转不变性;局部二值模式;成对比较LBP;烟雾识别;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号