首页> 外文期刊>Computer speech and language >A monotonic statistical machine translation approach to speaking style transformation
【24h】

A monotonic statistical machine translation approach to speaking style transformation

机译:单调统计机器翻译方法用于语音风格转换

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a method for automatically transforming faithful transcripts or ASR results into clean transcripts for human consumption using a framework we label speaking style transformation (SST). We perform a detailed analysis of the types of corrections performed by human stenographers when creating clean transcripts, and propose a model that is able to handle the majority of the most common corrections. In particular, the proposed model uses a framework of monotonic statistical machine translation to perform not only the deletion of disfluencies and insertion of punctuation, but also correction of colloquial expressions, insertions of omitted words, and other transformations. We provide a detailed description of the model implementation in the weighted finite state transducer (WFST) framework. An evaluation of the proposed model on both faithful transcripts and speech recognition results of parliamentary and lecture speech demonstrates the effectiveness of the proposed model in performing the wide variety of corrections necessary for creating clean transcripts.
机译:本文提出了一种使用标注样式转换(SST)的框架将忠实的成绩单或ASR结果自动转换为干净的成绩单供人类食用的方法。我们在创建干净的成绩单时会对人类速记员进行的更正类型进行详细分析,并提出一个能够处理大多数最常见更正的模型。特别地,所提出的模型使用单调统计机器翻译的框架来不仅执行流离失所的删除和标点符号的插入,还执行口语表达的纠正,遗漏单词的插入以及其他转换。我们提供了在加权有限状态传感器(WFST)框架中模型实现的详细说明。对所提出的模型的真实记录以及议会和演讲的语音识别结果的评估表明,所提出的模型在执行创建干净的记录所必需的各种更正中是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号