首页> 外文会议>IEEE International Conference on Acoustics Speech and Signal;ICASSP 2010 >Improved statistical models for SMT-based speaking style transformation
【24h】

Improved statistical models for SMT-based speaking style transformation

机译:改进的基于SMT的说话风格转换的统计模型

获取原文

摘要

Automatic speech recognition (ASR) results contain not only ASR errors, but also disfluencies and colloquial expressions that must be corrected to create readable transcripts. We take the approach of statistical machine translation (SMT) to “translate” from ASR results into transcript-style text. We introduce two novel modeling techniques in this framework: a context-dependent translation model, which allows for usage of context to accurately model translation probabilities, and log-linear interpolation of conditional and joint probabilities, which allows for frequently observed translation patterns to be given higher priority. The system is implemented using weighted finite state transducers (WFST). On an evaluation using ASR results and manual transcripts of meetings of the Japanese Diet (national congress), the proposed methods showed a significant increase in accuracy over traditional modeling techniques.
机译:自动语音识别(ASR)结果不仅包含ASR错误,还包含必须修正以创建可读的成绩单的不满和口语表达。我们采用统计机器翻译(SMT)的方法将ASR结果“翻译”为抄录样式的文本。我们在此框架中介绍了两种新颖的建模技术:上下文相关的翻译模型,允许使用上下文来准确地建模翻译概率;对数和联合概率的对数线性插值,从而允许给出经常观察到的翻译模式更高的优先级。该系统使用加权有限状态传感器(WFST)实现。在使用ASR结果和日本国会(国民议会)会议的笔录进行评估时,提出的方法显示出比传统建模技术更高的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号