首页> 外文期刊>Computer speech and language >A hierarchical linguistic information-based model of English prosody: L2 data analysis and implications for computer-assisted language learning
【24h】

A hierarchical linguistic information-based model of English prosody: L2 data analysis and implications for computer-assisted language learning

机译:基于分层语言信息的英语韵律模型:L2数据分析及其对计算机辅助语言学习的启示

获取原文
获取原文并翻译 | 示例

摘要

The paper presents a prosody model of native English (L1) continuous speech as corrective prosodic feedback for non-native learners. The model incorporates both hierarchical discourse association and information structure to (1) pinpoint the prosodic features of multi-phrase continuous speech, and (2) simulate native-like expressive speech using corpus of North American and Taiwan L2 English. The bottom-up, additive, data-driven model aims to generate L1-like expressive continuous speech with built-in phonetic and phonological specifications at the lexical level, syntactic/semantic specifications at the next higher phrase and sentence levels, and completed with patterned paragraph associations and prosodic projections of information allocation at higher levels. The hierarchical model successfully allows us to identify L1-L2 differences by prosodic modules/patterns as novel additional features “discourse structure” and “information density” reliably nail down L1-L2 prosodic differences related to phrase association as well as information placement. Our L1 prosodic model with the proposed predictors and optimized model trained from L1 speech corpus showed increase of prediction over existing methods. As a corrective feedback for L2 learners, these predicted L1 prosodic features were compared with a baseline model by objective evaluation (RMS error and correlation) then superimposed onto the L2 speech tokens. Resynthesized L2 tokens were subsequently compared with the original L2 tokens for degrees of perceived accent using subjective evaluation (native-listener perception test). We believe the proposed model can be an effective alternative for implementing computer-assisted language learning (CALL) systems that helps generate L1-like prosody from text, and at the same time serves as corrective feedback for L2 learners.
机译:本文提出了一个以英语为母语的连续练习的韵律模型,作为非母语学习者的纠正性韵律反馈。该模型结合了层次化话语关联和信息结构,以(1)查明多短语连续语音的韵律特征,以及(2)使用北美和台湾L2英语语料库模拟类似母语的表达语音。自下而上的,加性的,数据驱动的模型旨在生成类似L1的表达性连续语音,在词汇级别上具有内置的语音和语音规范,在下一个较高的短语和句子级别上具有句法/语义规范,并以模式化方式完成更高级别的信息分配的段落关联和韵律预测。分层模型成功地使我们能够通过韵律模块/模式识别L1-L2差异,因为新颖的附加功能“话语结构”和“信息密度”可靠地确定了与短语关联和信息放置相关的L1-L2韵律差异。我们的L1韵律模型具有建议的预测变量和从L1语音语料库训练的优化模型,与现有方法相比,预测性有所提高。作为对L2学习者的纠正反馈,通过客观评估(RMS误差和相关性)将这些预测的L1韵律特征与基线模型进行比较,然后将其叠加到L2语音令牌上。随后使用主观评估(本地听众感知测试),将重新合成的L2令牌与原始L2令牌的感知重音程度进行比较。我们认为,所提出的模型可以成为实现计算机辅助语言学习(CALL)系统的有效替代方法,该系统可帮助从文本生成L1样的韵律,同时可作为L2学习者的纠正反馈。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号