首页> 外文期刊>Computer networks >Enhancing Device-to-Device direct discovery based on predicted user density patterns
【24h】

Enhancing Device-to-Device direct discovery based on predicted user density patterns

机译:根据预测的用户密度模式增强设备到设备的直接发现

获取原文
获取原文并翻译 | 示例

摘要

Device-to-Device (D2D) direct discovery service is a key component for Proximity Services (ProSe) and D2D communications. Depending on the type of the studied network (pedestrian, vehicular, residential, industrial), large spatio-temporal fluctuation in mobile users' density may occur inducing several patterns throughout the day. The current standards only account for fixed configurations of this service, and currently, the research into adaptive algorithms is done using analytical models and synthetic scenarios and configurations, which makes such solutions perform poorly on real systems. We propose an adaptive D2D discovery algorithm that, building upon existing work on user density prediction analytical models of the discovery process, uses historic network traces to update its operational parameters dynamically. We test the proposed algorithm and compare it to the discovery mechanism, defined in the Third Generation Partnership Project (3GPP) standards, in order to analyze the feasibility of these types of solutions. The simulation results show that the proposed algorithm strikes a balance between network utilization and time required for discovery, which is a very promising starting point for further research on this type of solutions. (C) 2019 Elsevier B.V. All rights reserved.
机译:设备到设备(D2D)直接发现服务是邻近服务(ProSe)和D2D通信的关键组件。根据所研究网络的类型(行人,车辆,住宅,工业),移动用户密度的时空大幅度波动可能会导致全天出现几种模式。当前的标准仅考虑了该服务的固定配置,目前,使用分析模型以及综合方案和配置对自适应算法进行了研究,这使得此类解决方案在实际系统上的性能较差。我们提出了一种自适应D2D发现算法,该算法基于发现过程的用户密度预测分析模型的现有工作,使用历史网络跟踪来动态更新其操作参数。我们测试提出的算法并将其与第三代合作伙伴计划(3GPP)标准中定义的发现机制进行比较,以分析这些类型的解决方案的可行性。仿真结果表明,该算法在网络利用率和发现时间之间取得了平衡,这是进一步研究此类解决方案的一个很有前途的起点。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号