首页> 外文期刊>Mobile networks & applications >Extreme Gradient Boost Classification Based Interesting User Patterns Discovery for Web Service Composition
【24h】

Extreme Gradient Boost Classification Based Interesting User Patterns Discovery for Web Service Composition

机译:Web服务组合的基于极端梯度Boost分类的有趣用户模式发现

获取原文
获取原文并翻译 | 示例

摘要

Web mining is the application of data mining techniques to discover the user interesting patterns from the web server. The behaviors of web users are monitored for services composition from a similar set of services accessed by the user. Various mining techniques have been developed for mining user interesting patterns but still discovering the most interesting patterns with less time complexity is a major research area. In order to extract the interesting actionable patterns with less time complexity, Best First Decision Tree Based Extreme Gradient Boost Classification (BFDT-XGBC) technique is introduced. At first, the user accessed patterns are extracted from the server log. Then, the base learner called Best First Decision Tree is employed to identify user interesting web patterns. In a decision tree, the first node is selected through the information gain to make a decision for classifying the web patterns. The classification is performed based on the correlation between the two web patterns. The Pearson correlation coefficient is used for measuring the correlation between web patterns and it provides the results as positive and negative correlation. Based on the positive correlation measure, the web patterns are classified through the node in a best first decision tree. The output of each best first decision tree is taken as base learners. Then the several base learners are combined to provide strong classification results by applying Extreme Gradient Boost Classification in BFDT-XGBC technique. Extreme Gradient Boost classifier is employed to compute the loss function of all base learners for constructing the strong classifier. Thus the similar user interesting patterns are correctly identified with higher accuracy and minimal time. Experimental evaluation of proposed BFDT-XGBC technique and existing methods are carried out with the web server log files. The results reported that the BFDT-XGBC technique effectively discoverered the web user interesting patterns through Web pattern identification accuracy, computational time, false positive rate and space complexity. Based on the result observations, BFDT-XGBC technique is more efficient than the existing methods.
机译:Web挖掘是数据挖掘技术的应用,可以从Web服务器发现用户感兴趣的模式。从用户访问的一组相似服务中监视Web用户的行为以了解服务组成。已经开发了各种挖掘技术来挖掘用户感兴趣的模式,但是仍然以较少的时间复杂性发现最有趣的模式是一个主要的研究领域。为了以较少的时间复杂度提取有趣的可操作模式,引入了基于最佳优先决策树的极端梯度提升分类(BFDT-XGBC)技术。首先,从服务器日志中提取用户访问的模式。然后,采用称为“最佳第一决策树”的基础学习器来识别用户感兴趣的Web模式。在决策树中,通过信息增益选择第一节点,以做出用于对Web模式进行分类的决策。基于两个网络模式之间的相关性执行分类。皮尔森相关系数用于测量卷筒纸样之间的相关性,并提供正负相关的结果。基于正相关度量,将Web模式通过节点分类为最佳第一决策树。每个最佳第一决策树的输出将作为基础学习者。然后,通过在BFDT-XGBC技术中应用“极端梯度增强分类”,将几个基础学习者组合在一起,以提供强大的分类结果。极端梯度Boost分类器用于计算所有基础学习者的损失函数,以构建强分类器。因此,可以以更高的准确性和最短的时间正确识别相似的用户感兴趣的模式。利用Web服务器日志文件对提出的BFDT-XGBC技术和现有方法进行了实验评估。结果报告说,BFDT-XGBC技术通过Web模式识别准确性,计算时间,误报率和空间复杂性有效地发现了Web用户感兴趣的模式。根据结果​​观察,BFDT-XGBC技术比现有方法更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号