首页> 外文期刊>Computer networks >CCIPCA-OPCSC: An online method for detecting shared congestion paths
【24h】

CCIPCA-OPCSC: An online method for detecting shared congestion paths

机译:CCIPCA-OPCSC:一种用于检测共享拥塞路径的在线方法

获取原文
获取原文并翻译 | 示例

摘要

It is very useful to detect network paths sharing the same bottleneck for improving efficiency and fairness of network resource usage. Existing techniques have been designed to detect shared congestion between a pair of paths with a common source or destination point. And they are poor in scalability and not applicable to online detection. To cope with these problems, a novel method called CCIPCA-based Online Path Clustering by Shared Congestion (CCIPCA-OPCSC) is proposed to detect shared congestion paths, whose essence lies in the use of a novel eigenvector projection analysis (EPA). First, the delay measurement data of each path are mapped into a point in a new, low-dimensional space based on the correlation among paths reflected by the eigenvectors and eigenvalues in the process of PCA. In this new space, points are close to each other if the corresponding paths share congestion. CCIPCA is also introduced to compute the eigenvectors and eigenvalues incrementally. Second, the clustering analysis is applied on these points so as to identify shared congestion paths accurately. CCIPCA-OPCSC has low computational complexity and can fulfill the requirement of online detection. This method is evaluated by NS2 simulations and experiments on the PlanetLab testbed over the Internet. The results demonstrate that this novel method is feasible and effective.
机译:检测共享相同瓶颈的网络路径对于提高网络资源使用的效率和公平性非常有用。现有技术已被设计为检测具有公共源或目标点的一对路径之间的共享拥塞。而且它们的可伸缩性很差,不适用于在线检测。为了解决这些问题,提出了一种基于共享拥塞的基于CCIPCA的在线路径聚类(CCIPCA-OPCSC)的新方法来检测共享拥塞路径,其实质在于使用新颖的特征向量投影分析(EPA)。首先,在PCA处理过程中,基于特征向量和特征值反映的路径之间的相关性,将每个路径的延迟测量数据映射到新的低维空间中的一个点。在这个新空间中,如果相应的路径共享拥塞,则点彼此接近。还引入了CCIPCA来逐步计算特征向量和特征值。其次,对这些点进行聚类分析,以便准确识别共享的拥塞路径。 CCIPCA-OPCSC计算复杂度低,可以满足在线检测的要求。该方法是通过Internet上PlanetPlanet Lab的NS2模拟和实验进行评估的。结果表明,该新方法是可行和有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号