首页> 外文期刊>IEEE/ACM Transactions on Networking >A Wavelet-Based Approach to Detect Shared Congestion
【24h】

A Wavelet-Based Approach to Detect Shared Congestion

机译:基于小波的共享拥塞检测方法

获取原文
获取原文并翻译 | 示例

摘要

Per-flow congestion control helps endpoints fairly and efficiently share network resources. Better utilization of network resources can be achieved, however, if congestion management algorithms can determine when two different flows share a congested link. Such knowledge can be used to implement cooperative congestion control or improve the overlay topology of a P2P system. Previous techniques to detect shared congestion either assume a common source or destination node, drop-tail queueing, or a single point of congestion. We propose in this paper a novel technique, applicable to any pair of paths on the Internet, without such limitations. Our technique employs a signal processing method, wavelet denoising, to separate queueing delay caused by network congestion from various other delay variations. Our wavelet-based technique is evaluated through both simulations and Internet experiments. We show that, when detecting shared congestion of paths with a common endpoint, our technique provides faster convergence and higher accuracy while using fewer packets than previous techniques, and that it also accurately determines when there is no shared congestion. Furthermore, we show that our technique is robust and accurate for paths without a common endpoint or synchronized clocks; more specifically, it can tolerate a synchronization offset of up to one second between two packet flows.
机译:每流拥塞控制可帮助端点公平有效地共享网络资源。但是,如果拥塞管理算法可以确定何时两个不同的流共享拥塞的链路,则可以更好地利用网络资源。此类知识可用于实现协作拥塞控制或改善P2P系统的覆盖拓扑。用于检测共享拥塞的先前技术采用了公共的源或目标节点,尾部排队或单个拥塞点。我们在本文中提出了一种新颖的技术,该技术适用于Internet上的任何一对路径,而没有这种限制。我们的技术采用一种信号处理方法,即小波去噪,以将网络拥塞造成的排队延迟与其他各种延迟变化分开。我们的基于小波的技术通过仿真和Internet实验进行了评估。我们证明,当检测具有公共端点的路径的共享拥塞时,我们的技术可提供更快的收敛性和更高的准确性,同时使用的数据包少于以前的技术,并且还可以准确确定何时不存在共享拥塞。此外,我们表明,对于没有公共端点或同步时钟的路径,我们的技术是可靠且可靠的;更具体地说,它可以容忍两个数据包流之间最多一秒的同步偏移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号