首页> 外文期刊>Computer methods in biomechanics and biomedical engineering >Using intravascular ultrasound image-based fluid-structure interaction models and machine learning methods to predict human coronary plaque vulnerability change
【24h】

Using intravascular ultrasound image-based fluid-structure interaction models and machine learning methods to predict human coronary plaque vulnerability change

机译:使用基于血管内超声图像的流体结构交互模型和机器学习方法来预测人冠状动脉斑块脆弱性变化

获取原文
获取原文并翻译 | 示例

摘要

Plaque vulnerability prediction is of great importance in cardiovascular research. In vivo follow-up intravascular ultrasound (IVUS) coronary plaque data were acquired from nine patients to construct fluid-structure interaction models to obtain plaque biomechanical conditions. Morphological plaque vulnerability index (MPVI) was defined to measure plaque vulnerability. The generalized linear mixed regression model (GLMM), support vector machine (SVM) and random forest (RF) were introduced to predict MPVI change (Delta MPVI = MPVIfollow-up-MPVIbaseline) using ten risk factors at baseline. The combination of mean wall thickness, lumen area, plaque area, critical plaque wall stress, and MPVI was the best predictor using RF with the highest prediction accuracy 91.47%, compared to 90.78% from SVM, and 85.56% from GLMM. Machine learning method (RF) improved the prediction accuracy by 5.91% over that from GLMM. MPVI was the best single risk factor using both GLMM (82.09%) and RF (78.53%) while plaque area was the best using SVM (81.29%).
机译:斑块脆弱性预测在心血管研究中具有重要意义。在体内随访血管内超声(IVUS)冠状动脉斑块数据是从九名患者中获得的,以构建流体结构相互作用模型,以获得斑块生物力学条件。定义了形态斑块脆弱性指数(MPVI)以测量斑块脆弱性。引入广义线性混合回归模型(GLMM),支持向量机(SVM)和随机森林(RF)以预测基线的十个风险因素的预测MPVI变化(Delta MPVi = MPVifalling-MPVibaseline)。平均壁厚,腔面积,斑块区域,临界斑块壁应力和MPVI的组合是使用RF预测精度的最佳预测指标,其预测精度为91.47%,而来自SVM的90.78%,GLMM的85.56%。机器学习方法(RF)从GLMM从中提高了预测精度5.91%。 MPVI是使用GLMM(82.09%)和RF(78.53%)的最佳单一危险因素,而使用SVM的斑块区域是最好的(81.29%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号