首页> 外文期刊>Computer methods in biomechanics and biomedical engineering >Biomechanical comparison of conventional and anatomical calcaneal plates for the treatment of intraarticular calcaneal fractures - a finite element study
【24h】

Biomechanical comparison of conventional and anatomical calcaneal plates for the treatment of intraarticular calcaneal fractures - a finite element study

机译:传统和解剖跟骨板治疗关节内跟骨骨折的生物力学比较-有限元研究

获取原文
获取原文并翻译 | 示例

摘要

Initial stability is essential for open reduction internal fixation of intraarticular calcaneal fractures. Geometrical feature of a calcaneal plate is influential to its endurance under physiological load. It is unclear if conventional and pre-contoured anatomical calcaneal plates may exhibit differently in biomechanical perspective. A Sanders' Type II-B intraarticular calcaneal fracture model was reconstructed to evaluate the effectiveness of calcaneal plates using finite element methods. Incremental vertical joint loads up to 450N were exerted on the subtalar joint to evaluate the stability and safety of the calcaneal plates and bony structure. Results revealed that the anatomical calcaneal plate model had greater average structural stiffness (585.7N/mm) and lower von Mises stress on the plate (774.5MPa) compared to those observed in the conventional calcaneal plate model (stiffness: 430.9N/mm; stress on plate: 867.1MPa). Although both maximal compressive and maximal tensile stress and strain were lower in the anatomical calcaneal plate group, greater loads on fixation screws were found (average 172.7MPa compared to 82.18MPa in the conventional calcaneal plate). It was noted that high magnitude stress concentrations would occur where the bone plate bridges the fracture line on the lateral side of the calcaneus bone. Sufficient fixation strength at the posterolateral calcaneus bone is important for maintaining subtalar joint load after reduction and fixation of a Sanders' Type II-B calcaneal fracture. In addition, geometrical design of a calcaneal plate should worth considering for the mechanical safety in practical usage.
机译:初期稳定性对于关节内跟骨骨折的切开复位内固定至关重要。跟骨板的几何特征对其在生理负荷下的承受力有影响。目前尚不清楚常规和预轮廓的跟骨解剖板在生物力学方面是否表现出不同。用有限元方法重建Sanders II-B型关节内跟骨骨折模型,以评估跟骨板的有效性。距下ar骨施加最大450N的增量垂直关节载荷,以评估跟骨板和骨结构的稳定性和安全性。结果显示,与传统跟骨板模型(刚度:430.9N / mm;应力)相比,解剖跟骨板模型具有更高的平均结构刚度(585.7N / mm)和更低的冯·米塞斯应力(774.5MPa)。在板上:867.1MPa)。尽管解剖型跟骨板组的最大压缩应力和最大拉伸应力及应变均较低,但固定螺钉的负载却更大(平均172.7MPa,而传统跟骨板为82.18MPa)。注意到在骨板桥接跟骨外侧上的骨折线的地方会发生高强度应力集中。在Sanders II-B型跟骨骨折复位后,足够的固定在后外侧跟骨上的强度对于维持距下关节的负荷很重要。另外,跟骨板的几何设计在实际使用中应考虑机械安全性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号