首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics
【24h】

Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics

机译:几何精确的3D光束理论:静态和动态应变不变有限元的实现

获取原文
获取原文并翻译 | 示例

摘要

Geometrically exact 3D beam theory has been used as a basis for development of a variety of finite element formulations. It has recently become apparent that the important requirement of objectivity of adopted strain measures, although provided by the theory itself, does not automatically extend to a finite element formulation. In this paper we present a new finite element formulation of the geometrically exact 3D beam theory, specifically designed to preserve the objectivity of the adopted strain measures. In order to do so the current local rotations are interpolated in a manner similar to that adopted in co-rotational approaches. However, no approximations typical for co-rotational approaches are introduced into the procedure, so in contrast to co-rotational formulations, the present formulation fully preserves the geometric exactness of the theory. A range of numerical examples serves to illustrate the problem and to assess the formulation.
机译:几何精确的3D射束理论已被用作开发各种有限元公式的基础。最近已经很明显,尽管理论本身提供了所采用的应变测量的客观性的重要要求,但它并不能自动扩展到有限元公式。在本文中,我们提出了一种几何精确的3D射束理论的新的有限元公式,专门设计用于保持所采用应变测量的客观性。为此,以与同向旋转方法相似的方式对当前局部旋转进行插值。但是,没有将同向旋转方法的典型近似值引入该过程中,因此与同向旋转公式相反,本公式完全保留了该理论的几何精确性。一系列数值示例可用来说明问题并评估配方。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号