首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Nonconforming finite element methods for the simulation of waves in viscoelastic solids
【24h】

Nonconforming finite element methods for the simulation of waves in viscoelastic solids

机译:粘弹性固体中波模拟的非协调有限元方法

获取原文
获取原文并翻译 | 示例

摘要

The propagation of waves in two- and three-dimensional bounded viscoelastic media is described in the space-frequency domain, leading to a Helmholtz-type boundary value problem, which is noncoercive, non-Hermitian, and complex valued. First-order absorbing boundary conditions are derived and used to minimize spurious reflections from the artificial boundaries. The paper consists of two parts. In Part Ⅰ we describe the global procedures for the approximate solution of the problem. Simplicial and rectangular nonconforming finite element methods are employed for the spatial discretization. Optimal error estimate in a broken energy and L~2(Ω) norms are derived using a bootstrapping argument of Schatz. Also a hybridization of these procedures is analyzed. In Part Ⅱ we define and analyze nonover-lapping domain decomposition iterative methods. Convergence results are derived and numerical experiments showing the potential applicability in seismology are presented.
机译:波在二维和三维有界粘弹性介质中的传播在空间频率域中进行了描述,从而导致了Helmholtz型边值问题,该问题是非矫顽性,非Hermitian值和复值的。导出一阶吸收边界条件,并将其用于最小化来自人工边界的虚假反射。本文由两部分组成。在第一部分中,我们描述了近似解决问题的全局程序。简单离散和矩形非协调有限元方法用于空间离散化。利用Schatz的自举参数得出了断能和L〜2(Ω)范数下的最佳误差估计。还分析了这些程序的杂交。在第二部分中,我们定义和分析了非重叠域分解迭代方法。得出收敛结果,并进行数值实验,表明其在地震学中的潜在适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号