首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An evaluation of back-propagation neural networks for the optimal design of structural systems: Part Ⅰ. Training procedures
【24h】

An evaluation of back-propagation neural networks for the optimal design of structural systems: Part Ⅰ. Training procedures

机译:反向传播神经网络对结构系统优化设计的评估:第一部分。培训程序

获取原文
获取原文并翻译 | 示例

摘要

Design optimization using approximations based on feed-forward back-propagation neural network is the topic of much recent research. The neural network schemes that have been proposed in the literature for optimal design of structural systems differ in their architecture and training procedures. Furthermore, their utility vis-a-vis classical optimization techniques is not always clear. A systematic comparison of the efficiency and accuracy of the neural network-based solution schemes to classical structural optimization techniques is the aim of this and the companion paper.
机译:基于前馈反向传播神经网络的近似设计优化是最近研究的主题。文献中提出的用于结构系统最佳设计的神经网络方案在其体系结构和培训程序方面有所不同。此外,相对于经典优化技术,它们的效用并不总是很清楚。本文和随附论文的目的是系统比较基于神经网络的解决方案与经典结构优化技术的效率和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号