首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Parallel methods for optimality criteria-based topology optimization
【24h】

Parallel methods for optimality criteria-based topology optimization

机译:基于最优性准则的拓扑优化的并行方法

获取原文
获取原文并翻译 | 示例

摘要

Topology optimization problems require the repeated solution of finite element problems that are often extremely ill-conditioned due to highly heterogeneous material distributions. This makes the use of iterative linear solvers inefficient unless appropriate preconditioning is used. Even then, the solution time for topology optimization problems is typically very high. These problems are addressed by considering the use of non-overlapping domain decomposition-based parallel methods for the solution of topology optimization problems. The parallel algorithms presented here are based on the solid isotropic material with penalization (SIMP) formulation of the topology optimization problem and use the optimality criteria method for iterative optimization. We consider three parallel linear solvers to solve the equilibrium problem at each step of the iterative optimization procedure. These include two preconditioned conjugate gradient (PCG) methods: one using a diagonal preconditioner and one using an incomplete LU factorization preconditioner with a drop tolerance. A third substructuring solver that employs a hybrid of direct and iterative (PCG) techniques is also studied. This solver is found to be the most effective of the three solvers studied, both in terms of parallel efficiency and in terms of its ability to mitigate the effects of ill-conditioning. In addition to examining parallel linear solvers, we consider the parallelization of the iterative optimality criteria method. To tackle checkerboarding and mesh dependence, we propose a multi-pass filtering technique that limits the number of "ghost" elements that need to be exchanged across interprocessor boundaries.
机译:拓扑优化问题需要重复解决有限元问题,由于材料分布非常不均匀,这些问题往往病情严重。除非使用适当的预处理,否则这将导致迭代线性求解器的使用效率低下。即使那样,拓扑优化问题的解决时间通常也很高。通过考虑使用不重叠的基于域分解的并行方法来解决拓扑优化问题,可以解决这些问题。此处提出的并行算法基于具有拓扑优化问题的惩罚性(SIMP)公式的固体各向同性材料,并使用最优性标准方法进行迭代优化。我们考虑使用三个并行线性求解器在迭代优化过程的每个步骤中求解平衡问题。其中包括两种预处理的共轭梯度(PCG)方法:一种使用对角预处理器,另一种使用不完全LU分解预处理器(具有容差)。还研究了采用直接和迭代(PCG)技术混合的第三子结构求解器。从并行效率和缓解不良状况影响的能力来看,该求解器是研究的三个求解器中最有效的。除了检查并行线性求解器外,我们还考虑迭代最优标准方法的并行化。为了解决棋盘格和网格的依赖性,我们提出了一种多通滤波技术,该技术限制了需要在处理器间边界之间交换的“重影”元素的数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号