首页> 外文学位 >Design of optimal porous material structures for maximized stiffness and permeability using topology optimization and finite element methods.
【24h】

Design of optimal porous material structures for maximized stiffness and permeability using topology optimization and finite element methods.

机译:使用拓扑优化和有限元方法设计最佳的多孔材料结构,以实现最大的刚度和渗透性。

获取原文
获取原文并翻译 | 示例

摘要

Topology optimization is a tool for finding the best solutions to engineering design problems. Such solutions meet performance specifications while minimizing cost, weight, and/or selected responses and thus potentially offer tremendous benefits. Topology optimization has been used to determine the distribution of materials in beams and mechanisms, and to design the microstructure of periodic materials to attain, for example, extreme elastic properties.; The goal of this work is to extend topology optimization to the design of periodic materials with maximized stiffness and permeability. To achieve this, methodologies are proposed for circumventing numerical instabilities and difficulties in stiffness and fluid transport optimization. In particular, mesh dependence and checkerboard patterns in stiffness problems are overcome by imposing a minimum length scale on structural members. The proposed methodology implements nodal design variables that are projected onto element space via a regularized Heaviside function. This technique is shown to yield nearly 0--1 (void-solid) solutions that meet the length scale criterion. This methodology is also combined with established numerical homogenization techniques to design one-length-scale materials with extreme elastic properties. For the maximum fluid transport problem, the binary moving-boundary no-slip condition along the solid-fluid interface is regularized with a new Darcy-Stokes finite element. The element is scaled so that fluid flow through voids and solids is governed by Stokes flow and Darcy flow, respectively. When a low permeability material is used, the technique successfully simulates the no-slip condition and creates nearly 0--1 optimal topologies. It is also applied to the design of periodic materials, where a numerical implementation of homogenization theory is proposed and an inverse homogenization problem for designing a maximum permeability material is solved. The optimal design is found to be a solution that minimizes the fluid-structure interface.; With numerical difficulties overcome and the inverse homogenization formulation for fluids developed, the modules are combined to design a multifunctional material optimized for both effective stiffness and permeability. These properties are competing and consequently the final design is dependent on the relative importance assigned by the designer to the respective terms in the objective function. The designer selects these values according to the materials' intended use, thereby tailoring the microstructure for its specific application.
机译:拓扑优化是一种为工程设计问题找到最佳解决方案的工具。这样的解决方案符合性能规格,同时将成本,重量和/或选定的响应最小化,因此潜在地提供了巨大的好处。拓扑优化已被用来确定梁和机构中材料的分布,并设计周期性材料的微观结构以获得例如极高的弹性。这项工作的目的是将拓扑优化扩展到具有最大刚度和磁导率的周期性材料的设计。为了实现这一目标,提出了一些方法来解决数值不稳定性以及刚度和流体传输优化中的困难。特别是,通过在结构构件上设置最小长度比例,可以克服刚度问题中的网格依赖性和棋盘格图案。所提出的方法实现了节点设计变量,这些变量通过正则化的Heaviside函数投影到元素空间上。结果表明,该技术可产生满足长度比例标准的接近0--1(空隙固体)的溶液。该方法学还与已建立的数值均化技术相结合,以设计具有极高弹性的单长度材料。对于最大的流体传输问题,使用新的Darcy-Stokes有限元对沿着固体-流体界面的二元运动边界无滑移条件进行了正则化。对该元素进行缩放,以便通过空隙和固体的流体流分别由斯托克斯流和达西流控制。当使用低渗透性材料时,该技术成功地模拟了防滑条件并创建了接近0--1的最佳拓扑。它也应用于周期性材料的设计,提出了均质化理论的数值实现,并解决了设计最大渗透率材料的逆均质化问题。发现最佳设计是使流体-结构界面最小化的解决方案。由于克服了数值上的困难并开发了用于流体的逆均质化配方,因此将这些模块组合在一起,可以设计出一种针对有效刚度和渗透性进行了优化的多功能材料。这些属性是相互竞争的,因此最终设计取决于设计者对目标函数中各个术语的相对重要性。设计人员根据材料的预期用途选择这些值,从而针对其特定应用定制微结构。

著录项

  • 作者

    Guest, James Kevin.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Engineering Civil.; Engineering Mechanical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 192 p.
  • 总页数 192
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;机械、仪表工业;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号